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S1 Computational method 

First-principles calculations were conducted within the framework of density functional theory 

(DFT) employing the projector augmented wave (PAW) method as implemented in the Vienna ab 

initio simulation package (VASP) [1, 2]. The Perdew-Burke-Ernzerhof (PBE) formulation of the 

generalized gradient approximation (GGA) was employed for the exchange-correlation potential 

[3]. A cutoff energy of 500 eV was utilized, and structural relaxation was performed until the 

residual forces were below 0.01 eV/Å. To account for the Coulomb interaction, the GGA+U method 

with a U value of 3 eV for the Sc-d electrons was employed. To identify its topology, we construct 

triangular nanoflakes of ScI2 monolayer with 87 Å on each edge, which ensures that the nanoflakes 

have a large enough width to avoid the interactions among different corners. The construction of 

maximally localized Wannier functions (MLWFs) was constructed in the basis of Sc-d and I-p 

orbitals using the WANNIER90 code [4], which combined the results of first-principles calculations 

from VASP. The surface density of states is obtained by the iterative Green’s function method [5]. 

 

S2 Floquet Effective k p⋅  Hamiltonian with out-of -plane magnetic field 

Assuming m λ> ∆ >   and focusing solely on the two lowest energy bands. With out-of-

plane magnetic field, the energy can be obtained through matrix diagonalization: 
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1( ) [2 2 ( ) 4 ( )].
2c v x yE e m t k kτ τλ τλ= − − ± ∆ + + +  

At 0=q  , the energy of valleys is ( , )
2cE e mτ η ∆

= + −  , and ( , )
2vE e mτ η τλ∆

= − − −  . 

Based on Floquet theory, when a CPL is applied, the k p⋅  Hamiltonian can be periodic in time 

( ) ( )H t H t T= +  . By Peierls substitution /e→ +k k A   , time-dependent Hamiltonian is 

obtained. [ ]1 2cos( ) sin( )A t tω η ω= +A e e  is the vector potential of the CPL, where 1η = ±  

denotes the left/right-handed CPL, A  and ω  is the amplitude and frequency of vector potential. 
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Considering the Floquet theory in the high-frequency (ω ) limit, the effective time-independent 

Hamiltonian describing the light driven system can be formulated as 
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± = ∫   is the Fourier component in the frequency space and 

2 /T π ω=  is the period of the CPL. By explicitly calculating high-frequency expansion up to 

first-order term, we have the effective Hamiltonian 
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with out-of-plane magnetic field can be obtained: 
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To simplify the analysis of light's effect on valleys, we initially assume 0λ =  for the SOC 

effect. Subsequently, we can get the energy gap 
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valleys. Appling the left-handed CPL, the energy difference between the band gap at K ′  valley 

and K   valley is 
( )2 2
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−
 . This result implies that, under the influence of CPL, valley 

degeneracy is broken, leading to simultaneous valley polarization in both the valence and 

conduction bands. The magnitude of valley polarization depends on the amplitude of light. With 

increasing amplitude of light, valley splitting enlarges, and the gap decreases. It is noteworthy that 

when 
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∆ = , the K  valley closes and leading the system to a half-valley metal 

state. Under the application of right-handed CPL, increasing amplitude of light leads to gap closure 

in the opposite valley. In the presence of a nonzero λ , spontaneous valley polarization emerges, 

but with increasing light intensity, it will still become a half-valley metal state. Upon further 

examination of the second-order term, 
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that the effect of the higher order term is similar to that of the first order term, where the correction 

to the valley energy is likewise influenced by the magnitude of amplitude of light. 

 



 

 

 

S3 Detailed analysis for the Floquet tight-binding Hamiltonian 

Here, a symmetry constrained tight-binding (TB) model has been constructed based on the 

2 2 2 2 2 2, ,, , , ,
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d d d d d d↑ ↓↑ ↑ ↓ ↓− −
  orbitals with spin. This TB model for the magnetic 

monolayer can be expressed as follows: 
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where † ( )n ic r  ( ( )n jc ′ r ) represents the creation (annihilation) operator for an electron on site i  

(site j  ), where ,m n   denotes different orbitals with spin. Given the constraint of 3hD   point 

group symmetry, the intra-layer hopping terms are reduced to six parameters, while the inter-layer 

hopping terms are simplified to two parameters.  

Under the constraint of 3hD  point group symmetry, the intra-layer hopping terms are reduced 

to eight parameters, while the inter-layer hopping terms are reduced to two parameters while 

preserving spin degeneracy. The Hamiltonian 0 ( )H k   in the momentum space representation 

under the constraint of symmetry operation R can be written as 
1 1( ) ( ) ( ) ( )ˆP R H P R H R− −=k k . 

The point group 3hD  contains discrete rotation symmetry 3C  (the axis is perpendicular to 

the plane), mirror symmetry zM  , mirror symmetry xM  , and any of their combination. 

Considering symmetry restrictions on the model hopping parameters, we start from the three-band 

nearest-neighbor hopping TB model for the TMDs monolayer, and the Hamiltonian can be 

expressed as [6]  
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Subsequently, we further consider the interaction of spin-orbit coupling (SOC) by the on-site 

contribution term ⋅L S  and magnetic field interactions, and add the two terms to the model as: 

0( ) ( ) SOC MH H H H= + +k k . 

In which 

SOC soH t= ⋅L S , 

M mH t= ⋅B S , 

where SOCH   and MH   are on-site SOC interaction with strength sot   and exchange field 

(magnetic field) terms with strength mt , respectively. ( , , )x y zB B B=B  represents the directions 

of the magnetic field. sot  =0.2 eV and mt  =3.0 eV are used. With in-plane magnetic field, the 

conduction and valence bands around the Fermi level for the TB model have the same spin channel 

and possess a significant band gap. 

When a time-periodic light field is applied to the TB model, the time dependent TB 

Hamiltonian can be written as  
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jd  is the position vector between orbital m in 0 cell and orbital n in j-

cell. Based on Floquet–Bloch theory, the effective static Hamiltonian can be written as [7] 
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where ( )mnhα β− k  is the matrix element of the q th part of the Floquet matrix, and qJ  is the q -

th Bessel function of the first kind. Because larger values of q , qJ  decrease more rapidly to zero 

with weak light intensity, it is only necessary to include a few lowest-order photon processes into 



FH , and this can restrict it to a finite dimension. Here, desirable convergence results can be reached 

by considering only the first-order term of qJ . In our work, 12eVω =  is chosen to be larger 

than bandwidth so that the Floquet bands do not cross each other. A comparison of the band 

structures considering both the first-order and second-order truncated terms with different light 

intensities is shown in the figure below. 

 

Table S1. The parameters amplitudes in eV of the TB model with SOC and exchange field terms. 

 

hopping 𝜖𝜖1 𝜖𝜖2 𝑡𝑡1 𝑡𝑡2 𝑡𝑡3 

 𝑡𝑡4 𝑡𝑡5 𝑡𝑡6 𝑡𝑡𝑠𝑠𝑠𝑠 𝑡𝑡𝑚𝑚 

strength 1.746 2.804 −0.184 0.401 0.507 

 0.218 0.338 0.057 0.2 3.0 

 

 

S4 Orbital Hall conductivity and orbital weighted Berry curvature 

We can calculate the orbital Hall conductivity (OHC)  responses to an applied electric field. 

Up to linear order on the external field, they are given by 
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represents the Berry curvature weighted by angular momentum. Here, nεk   represents the 

eigenvalue of the Hamiltonian ( )H k


 in reciprocal space, and muk  corresponds to the eigenvector. 

In this context, n  signifies the band index, and k


 denotes the wave vector. The velocity operator 

denotes as  ( ) ( )( ) ( ) /x y x yk H k kν = ∂ ∂
 

 , with x  and y  specifying the Cartesian axes, and we 

assume that the electric field is applied along the x̂   direction. The orbital angular momentum 

current density operator is defined as , ( ) ( ) / 2z
o i z y y zv k v k = + 

 

  , where η  represent the 

z components of the atomic angular momentum operators. 

 

 



 

 
Figure S1 Orbital-resolved band structures and energy dependence of the anomalous Hall 

conductivity (AHC) and orbital Hall conductivity (OHC) for the TB model with in-plane 

magnetization under the irradiation of right-handed CPL with light intensity /eA   of (a, b) 0.7 

Å-1, (d, e) 0.9 Å-1, and (g, h) 1.2 Å-1, respectively. Red and blue lines in (b, e, h) represent the OHC 

(unit / 2e π  ) and AHC (unit 2 /e h  ), respectively. (c) Energy spectrum of the triangle-shaped 

nanoflake for the TB model with light intensity /eA    of 0.7 Å-1, where red dots mark the 

nontrivial corner states. Inset presents the total charge distribution of the nontrivial corner states. (f) 

Energy dispersion of a semi-infinite nanoribbon for the TB model with a light intensity /eA   of 

0.9 Å-1, revealing characteristic chiral edge states due to the nontrivial QAHE. (i) K-space 

distributions of orbital Berry curvature under right-handed CPL with multiple topological states. 

 

 

 

 

 

 



 
Figure S2 Orbital-resolved band structures and energy dependence of AHC and OHC for ScI2 

monolayer with in-plane ferromagnetism under the irradiation of right-handed CPL with light 

intensity /eA   of (a) 0.30 Å-1, (c) 0.35 Å-1, and (e) 0.50 Å-1, respectively. K-space distributions 

of (b) Berry curvature and (f) orbital Berry curvature under right-handed CPL with multiple 

topological states. (d) Energy dispersion of a semi-infinite nanoribbon for ScI2 monolayer with a 

light intensity /eA   of 0.35 Å-1, revealing characteristic chiral edge states due to the nontrivial 

QAHE. 

 

 



 
Figure S3 Band structure of the TB model with an in-plane magnetic field under the irradiation of 

left-handed CPL with light intensity /eA   of (a) 0.0 Å-1, (b) 0.4 Å-1, (c) 0.86 Å-1, (d) 1.16 Å-1, 

(e) 1.2 Å-1, respectively. (f) Phase diagram of the TB model with an in-plane magnetic field as a 

function of light intensity. CPL can drive multiple phase transitions from a second-order topological 

insulator (SOTI) to a valley-polarized Quantum Anomalous Hall (QAH) phase and subsequently to 

a normal insulator (NI) state. 

 

 

 
Figure S4 The Floquet band structures of ScI2 monolayer among different truncated orders (q=1, 2) 

with light intensity /eA   of (a) 0.30 Å-1 and (b) 0.50 Å-1, where dashed lines represent the first-

order terms, and solid lines represent the second-order terms. 



 
Figure S5 (a) The band structures for ScI2 monolayer with out-of-plane ferromagnetism under the 

irradiation of left-handed CPL with light intensity /eA    of 0.31 Å-1, 0.36 Å-1, and 0.39 Å-1, 

respectively. (b) Energy dispersion of a semi-infinite nanoribbon for ScI2 monolayer with a light 

intensity /eA   of 0.36 Å-1. (c) Energy dependence of anomalous Hall conductivity with light 

intensity /eA   of 0.36 Å-1. Under light irradiation, band closures occur successively at the K' and 

K points, indicating that the system with out-of-plane ferromagnetism can undergo two topological 

phase transitions. 

 

 

Figure S6 Phase diagrams of the TB model with an in-plane magnetic field as a function of light 

intensity for (a) 𝜖𝜖2 -𝜖𝜖1  = 2.558 (smaller band gap) and (b) 𝜖𝜖2 -𝜖𝜖1 = 1.058 (larger band gap), 

respectively. In both cases, CPL can drive multiple phase transitions from a SOTI to a QAH phase 

and subsequently to a NI state.  
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