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Supplementary Note 1. Phase fields model to simulate crack propagation in composite material 

In this study, we adopt a phase field approach utilizing a hybrid formulation,[1] inspired by 

Griffith's thermodynamics. This method, tailored to characterize the intricate failure behaviors 

of CMs, provides foundational data for training our deep learning model. As depicted in 

Supplementary Fig. 1, the topology of the sharp crack is represented by the phase field scalar 

parameter, d(x). This parameter indicates the extent of the material's damage or fracture: a 

value of 1 signifies total failure, while 0 indicates no damage. The phase-field methodology 

offers a comprehensive framework, capably simulating various failure mechanisms in CMs, 

such as reinforcement breakage due to external load transfer, and matrix cracking. Additionally, 

the hybrid approach enables the prediction of failure scenarios under combined loading. Our 

primary objective is to create an advanced deep learning model that serves as an effective 

surrogate, substantially reducing the inference time of crack phase field simulations. Also, 

generating a simulated dataset that approximates real-world material behavior is the most 

fundamental to developing a robust deep learning model with high practicality. In that regard, 

the 'hybrid' energy degradation formulation integrates the key principles of earlier developed 

isotropic and anisotropic formulations, providing realistic simulation framework. In this hybrid 

paradigm, crack evolution is predominantly driven by the tensile portion of the strain energy, 

a characteristic derived directly from the anisotropic formulation. This feature is advantageous 

as it inhibits crack evolution under compressive loading, aligning with real-world observations 

where uncontrolled crack propagation due to compressive loads is seldom seen. Unlike the 

anisotropic formulation, the degradation of the material's elastic modulus occurs uniformly in 

all directions, mirroring the isotropic formulation. This uniform degradation ensures that 

elements sustaining significant damage progressively lose their load-bearing capability, 

irrespective of the external load's direction. By harmoniously merging distinctive features from 

both isotropic and anisotropic methodologies, the hybrid formulation is crafted. Consequently, 
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it furnishes a more precise and realistic simulation framework for modeling the complex 

processes of deformation and eventual failure in CMs. Our objective is to validate the 

STGNet’s predictability for extrapolation problems, particularly for unseen configurations that 

demonstrates exceptional mechanical properties beyond those included in the training set,  

essential for optimizing CM design. Therefore, we generate dataset with various crack 

propagation scenarios from a wide variety of combinations of constituents by leveraging the 

strengths of crack phase field model. To generate the dataset of the entire failure process of 

CMs, we execute the crack phase field model through the Abaqus CAE’s User Element (UEL) 

subroutine with a staggered solution scheme. For this simulation, we consider two-dimensional 

CM configurations under plane stress conditions, simulated in displacement-controlled 

analysis with constant time step size. This setup includes perfectly bonded 70 stiff blocks and 

51 soft material blocks, arranged in an 11×11 square array. 132×132 structured quadrilateral 

meshes are utilized for the finite element simulation. A single edge pre-crack with a length of 

2.5mm was introduced centrally to initiate crack propagation, bypassing both the upper and 

lower boundaries. The selected material properties for the constituents (stiff and soft phases) 

are listed in Supplementary Table 1, where 𝐸𝐸 designates Young’s modulus, 𝜈𝜈 is Poisson’s 

ratio, and 𝑔𝑔𝑐𝑐 is critical energy release rate. Note that although quasi-static crack phase field 

modeling is employed, the methods utilized in this study can equivalently be applied to 

mechanically dynamic problems (e.g., dynamic crack propagation), provided that equispaced 

or, at least, equivalent variable time steps are used for datasets.  
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Supplementary Fig. 1. Two-dimensional crack topology: sharp crack model (left), diffusive crack 

model described by phase field function d(x) (right). 

 

 

Parameters 𝐸𝐸stiff 
(MPa) 

𝑔𝑔𝑐𝑐,stiff 
(J/

m2) 
𝜈𝜈stiff 𝐸𝐸soft 

𝑔𝑔𝑐𝑐,soft 
(J/

m2) 
𝜈𝜈soft 

Mesh 
size 

(mm) 

Number 
of mesh 

Applied 
strain 

Values 2,100 50 0.3 21 50 0.3 0.08 17,000 0.015 

Supplementary Table 1. Material properties of composite constituents. 

 

 

 

 

  



 

 5 

Supplementary Note 2. Baseline (autoregressive U-Net) algorithm  

To evaluate STGNet's powerful predictive capability for spatiotemporal dynamics, we 

conduct a comparative analysis with a baseline model. This baseline employs an autoregressive 

U-Net, a cutting-edge algorithm widely used in predicting the spatiotemporal dynamics in 

various research fields such as heat, fluids, and materials sciences.[2-4] As illustrated in 

Supplementary Fig. 2, local fields derived from the initial steps via FEM are fed into the 

baseline model to forecast subsequent local fields. These predicted fields are then channel-

stacked and recursively inputted for extended length predictions. However, this method of 

recycling outputs as inputs may engender long-term dependency challenges, potentially 

impairing the model's proficiency in predicting novel configurations. To ensure a fair 

comparison between STGNet and the baseline model, we maintained a consistent number of 

convolutional feature maps, 64, across both models, thus standardizing the learning parameters 

irrespective of layer depth variations. 
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Supplementary Fig. 2. Baseline algorithm: autoregressive U-Net to predict spatiotemporal dynamics 

such as stress evolution and crack propagation in composite material. 
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Supplementary Note 3.   

In the main manuscript, we verified the superiority of STGNet in predicting stress 

evolution and crack propagation in CMs, and to further verify the prediction ability of STGNet 

for more diverse CM morphologies, we compared the prediction ability on a random array of 

unseen CMs with more diverse crack scenarios as shown in Supplementary Fig. 3 and 4. 
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Supplementary Fig. 3. Stress evolution prediction results within the CM and comparison with FEM 

and baseline. We test the three unseen CM configuration (a-d). 
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 Supplementary Fig. 4. Crack propagation prediction results within the CM and comparison with FEM 

and baseline. We test the three unseen CM configuration (a-d). 
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Supplementary Note 4. Detailed training process of STGNet 

The ultimate goal of this study is to predict the stress evolution and crack propagation 

of materials with superior mechanical properties that the trained deep learning model has not 

seen before. Therefore, in this study, we generate 4,000 composites with random shapes and 

create corresponding stress evolution and crack propagation data through phase fields 

simulation. The materials are then sorted based on the mechanical characteristic of toughness 

(area under stress-strain curve), which indicates their capacity to withstand fracture. The top 

25% of these materials (1,000 samples) are selected to test the model's generalization ability, 

including its capacity to extrapolate toughness beyond the training data. The remaining 75% 

(3,000 samples) are used to train the STGNet (Supplementary Fig. 5).  

Moreover, it is crucial to assess the balance between the training set and the unused 

validation set to indicate whether the STGNet has been sufficiently trained. Supplementary 

Fig. 6 demonstrates that the STGNet has successfully achieved learning convergence. 

Particularly, the learning rate is reduced by a factor of ten every 200 epochs to further optimize 

the search, and as shown in Supplementary Fig. 6, it is evident that STGNet has successfully 

demonstrates its generalizability in predicting the stress evolution. In this study, the use of the 

ABAQUS MACRO FUNCTION to generate training and testing datasets minimized the 

tediousness of repetitive tasks due to configuration changes. Additionally, utilizing three 

desktop CPUs, it took approximately 29 days to generate total 4,000 dataset (both training and 

test). The training time for STGNet used in this study is about 5 hours. 
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Supplementary Fig. 5. Training/test set for developing and validating STGNet 

 

Supplementary Fig. 6. History of training/validation set of STGNet in predicting stress evolution.  
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