High Throughput Screening of Semiconductors with Low Lattice Thermal Transport Induced by Long-Range Interactions (Supporting Information)

Yu Wu,^{*,†} Linxuan Ji,[‡] Yimin Ding,[†] and Liujiang Zhou^{*,‡}

[†]Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

\$\$ School of Physics and State Key Laboratory of Electronic Thin Films and Integrated

Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

E-mail: wuyu9573@qq.com; ljzhou@uestc.edu.cn

Table S1: The chemical formula, space group, supercell for AIMD calculation, **q**-grid for κ_L calculation, formation energy (FE), average atomic mass and κ_L (300 K) of the screened 75 candidates. The chemical formula labeled with red color represents the material is unstable at 700 K.

Chemical	Space Group	Super Cell	q -grid	FE	Mass	$\kappa_L \; ({ m W/mK})$	ref.
Formula				(eV/atom)	(g/mol)		
Ag_4O_2	224	$3 \times 3 \times 3$	$11\times11\times11$	-0.82	77.25	2.14	
Ag_4O_4	14	$2 \times 4 \times 2$	$9\times14\times9$	-1.01	61.93	3.90	
Ag_4O_6	43	$3 \times 2 \times 3$	$14 \times 14 \times 14$	-1.01	52.75	8.77	
Al_4Ru_2	70	$3 \times 3 \times 3$	$13 \times 13 \times 13$	-0.83	51.68	14.19	

$\mathrm{As}_{2}\mathrm{Mg}_{3}$	164	$4 \times 4 \times 2$	$15 \times 15 \times 7$ -0.67	44.55	2.00	
$\mathrm{As}_4\mathrm{Cd}_2$	98	$4 \times 4 \times 2$	$13 \times 13 \times 13$ -0.17	87.42	2.53	
As_4Te_6	12	$3 \times 3 \times 2$	$13 \times 13 \times 11$ -0.16	106.53	1.03	
As_8Na_8	19	$2 \times 2 \times 2$	$12 \times 12 \times 9$ -0.99	48.96	0.55	
As_8Na_8	14	$3 \times 2 \times 2$	$12 \times 11 \times 8$ -0.99	48.96	0.84	
$\mathrm{As}_8\mathrm{Rb}_8$	19	$2 \times 2 \times 2$	$12 \times 12 \times 9$ -0.52	80.19	0.33	
$\operatorname{Ba}_2\operatorname{Se}_4$	15	$4 \times 4 \times 2$	$13\times13\times13$ -2.03	98.42	1.31	
$\mathrm{Bi}_{1}\mathrm{Li}_{3}$	225	$3 \times 4 \times 3$	$13\times13\times13$ -1.24	57.50	1.67	2.1^{1}
$\mathrm{Bi}_2\mathrm{Se}_3$	166	$3 \times 3 \times 3$	$14\times14\times14$ -1.16	130.97	2.32	1.33^{2}
$\mathrm{Bi}_4\mathrm{I}_4$	12	$3 \times 3 \times 2$	$13 \times 13 \times 6$ -1.06	167.94	0.82	
$\mathrm{Bi}_4\mathrm{Se}_8$	12	$2 \times 2 \times 3$	$13 \times 13 \times 6$ -1.04	122.30	0.34	
$\mathrm{Br}_4\mathrm{Te}_2$	136	$3 \times 2 \times 5$	$9 \times 9 \times 16$ -0.68	95.80	1.25	
C_4Os_4	198	$3 \times 3 \times 2$	$11\times11\times11$ -0.73	101.11	22.16	
$\mathrm{Ca}_{2}\mathrm{Ge}_{1}$	225	$4 \times 4 \times 4$	$12\times12\times12$ -1.02	50.92	5.73	
Ca_2Si_1	225	$4 \times 4 \times 4$	$12 \times 12 \times 12$ -0.89	36.08	8.66	
$\mathrm{Cl}_2\mathrm{Cu}_1$	12	$5 \times 5 \times 2$	$17 \times 17 \times 8$ -1.15	44.82	6.21	
$\mathrm{Co}_6\mathrm{O}_8$	227	$2 \times 2 \times 3$	$11\times11\times11$ -2.64	34.40	1.32	
$\mathrm{Cr}_3\mathrm{Si}_6$	180	$3 \times 3 \times 2$	$15 \times 15 \times 8$ -1.44	36.06	20.51	
$\mathrm{Cr}_3\mathrm{Si}_6$	181	$3 \times 3 \times 2$	$15 \times 15 \times 8$ -1.44	36.06	21.22	
$\mathrm{Cs}_4\mathrm{Te}_{16}$	14	$2 \times 3 \times 2$	$11 \times 12 \times 9$ -0.55	128.66	0.28	
$\mathrm{Cu}_4\mathrm{O}_2$	224	$3 \times 3 \times 3$	$12\times12\times12$ -2.25	47.70	4.43	
F_4Hg_2	136	$3 \times 3 \times 3$	$10\times10\times13$ -1.93	79.53	1.90	
$\mathrm{F}_{6}\mathrm{Mn}_{2}$	55	$2 \times 3 \times 3$	$9 \times 9 \times 13$ -3.92	27.98	7.64	
$\mathrm{Fe}_4\mathrm{Si}_4$	198	$2 \times 3 \times 3$	$11 \times 11 \times 11$ -1.11	41.97	22.62	
$\mathrm{Ga}_4\mathrm{Os}_2$	70	$3 \times 3 \times 3$	$14 \times 14 \times 14$ -0.38	109.88	8.40	
$\mathrm{Ge}_1\mathrm{Mg}_2$	225	$4 \times 4 \times 4$	$14 \times 14 \times 14$ -0.45	40.41	8.49	5.6^{3}
$\mathrm{Ge}_1\mathrm{Se}_1$	160	$5 \times 5 \times 5$	$16 \times 16 \times 16$ -0.51	75.79	6.30	4.53^{4}

${\rm Ge_1Te_1}$	160	$5 \times 5 \times 5$	$16\times16\times16$	-0.41	100.10	5.56
$\mathrm{Ge}_4\mathrm{O}_8$	205	$2 \times 2 \times 3$	$11 \times 11 \times 11$	-2.78	34.87	14.35
$\mathrm{Ge}_4\mathrm{Se}_4$	62	$2 \times 4 \times 3$	$5 \times 21 \times 21$	-0.75	75.78	2.48
$\mathrm{Hf}_{1}\mathrm{Se}_{2}$	164	$5 \times 5 \times 2$	$27\times27\times7$	-1.80	112.14	5.63
$\mathrm{Hf}_2\mathrm{Se}_6$	11	$3 \times 4 \times 2$	$11\times15\times7$	-1.50	103.84	4.55
$\mathrm{In}_4\mathrm{S}_4$	64	$3 \times 3 \times 2$	$13\times13\times6$	-1.15	73.44	1.99
$I_4 Te_2$	136	$2 \times 3 \times 5$	$9\times9\times15$	-0.40	127.14	2.57
$\mathrm{Ir}_4\mathrm{N}_8$	14	$2 \times 3 \times 2$	$11 \times 10 \times 11$	-3.17	73.41	25.43
K_4O_2	141	$3 \times 3 \times 3$	$10 \times 10 \times 14$	-1.84	31.40	2.19
${ m K}_{6}{ m Te}_{6}$	189	$2 \times 2 \times 3$	$11 \times 11 \times 10$	-1.11	83.35	0.38
K_8Te_{12}	62	$1 \times 2 \times 4$	$8 \times 10 \times 16$	-0.97	92.20	0.34
${\rm Li}_3{\rm Sb}_1$	225	$4 \times 3 \times 3$	$15 \times 15 \times 15$	-1.36	35.70	2.04
${\rm Li}_8{\rm P}_8$	14	$2 \times 2 \times 2$	$12 \times 12 \times 8$	-2.58	18.99	2.02
$\mathrm{Mg}_{1}\mathrm{Te}_{1}$	225	$4 \times 4 \times 4$	$15 \times 15 \times 15$	-0.91	75.95	2.88
$\mathrm{Mg}_{2}\mathrm{Si}_{1}$	225	$4 \times 4 \times 4$	$14 \times 14 \times 14$	-0.36	25.56	11.31
$\mathrm{Mg}_3\mathrm{Sb}_2$	164	$4 \times 4 \times 2$	$16\times16\times15$	-0.84	63.28	1.93
$\mathrm{Mo}_3\mathrm{Si}_6$	180	$3 \times 3 \times 2$	$15\times15\times8$	-1.08	50.70	14.96
N_4Pt_2	58	$3 \times 2 \times 4$	$13 \times 10 \times 16$	-3.06	74.36	142.29
N_6W_3	152	$3 \times 3 \times 2$	$12\times12\times8$	-3.80	70.62	5.07
N_8W_4	33	$2 \times 3 \times 2$	$11\times9\times11$	-3.82	70.62	7.35
Na_6S_6	189	$2 \times 2 \times 3$	$11 \times 11 \times 11$	-2.02	27.53	1.67
Na_8P_8	19	$3 \times 2 \times 2$	$12\times11\times8$	-2.68	26.98	0.89
$O_{11}Zr_6$	25	$3 \times 3 \times 1$	$16\times16\times5$	-4.50	42.55	3.04
O_2Pd_2	131	$5 \times 5 \times 2$	$16\times16\times9$	-1.56	61.21	84.21
O_2Pt_2	131	$4 \times 4 \times 2$	$16\times16\times9$	-1.38	105.54	66.01
O_6Pb_4	31	$5 \times 2 \times 2$	$15 \times 8 \times 10$	-2.06	92.48	0.89
O_6Ti_4	167	$2 \times 3 \times 3$	$11 \times 11 \times 11$	-4.08	28.75	7.64

 2.2^{1}

$O_{12}Ti_8$	62	$2 \times 2 \times 2$	$8\times19\times8$	-4.03	28.75	5.17	
$\mathrm{Os}_{2}\mathrm{P}_{4}$	58	$2 \times 3 \times 5$	$10\times8\times17$	-2.98	84.05	30.53	
$\mathrm{Os}_4\mathrm{Si}_4$	198	$3 \times 3 \times 2$	$11\times11\times11$	-0.80	109.14	16.76	
$\mathrm{Pb}_1\mathrm{Se}_1$	225	$4 \times 4 \times 4$	$14 \times 14 \times 14$	-0.93	143.08	2.88	1.7^{5}
Pb_1Te_1	225	$4 \times 4 \times 4$	$13\times13\times13$	-0.55	167.40	3.84	2.6^{5}
Pb_2S_2	186	$5 \times 5 \times 2$	$15\times15\times7$	-1.20	119.63	1.76	
$\mathrm{Rb}_{2}\mathrm{Te}_{5}$	12	$3 \times 2 \times 3$	$10\times10\times13$	-0.68	115.56	0.48	
$\mathrm{Rb}_{6}\mathrm{Te}_{6}$	189	$2 \times 2 \times 3$	$11\times11\times10$	-0.96	106.53	0.39	
$\mathrm{Ru}_4\mathrm{Si}_4$	198	$2 \times 3 \times 3$	$11 \times 11 \times 11$	-1.05	64.58	12.88	
$\mathrm{Sc}_4\mathrm{Se}_6$	15	$3 \times 3 \times 2$	$11\times11\times10$	-2.14	65.36	1.76	
$\mathrm{Sc}_4\mathrm{Te}_6$	15	$2 \times 3 \times 3$	$11\times11\times10$	-1.40	94.54	1.09	
$\mathrm{Se}_2\mathrm{Sn}_2$	63	$4 \times 3 \times 3$	$12\times12\times12$	-0.77	98.83	1.27	0.9^{6}
$\mathrm{Se}_2\mathrm{Sn}_2$	129	$5 \times 5 \times 2$	$18\times18\times7$	-0.73	98.83	2.98	
$\mathrm{Se}_{2}\mathrm{Zr}_{1}$	164	$5 \times 5 \times 2$	$18\times18\times7$	-1.78	83.05	5.57	
$\mathrm{Se}_4\mathrm{Sn}_4$	62	$2 \times 4 \times 3$	$6 \times 14 \times 13$	-0.78	98.83	2.42	1.3^{6}
$\mathrm{Se}_{6}\mathrm{Zr}_{2}$	11	$3 \times 4 \times 2$	$11\times15\times7$	-1.53	82.03	4.48	
$\mathrm{Si}_{6}\mathrm{W}_{3}$	180	$3 \times 3 \times 2$	$15 \times 15 \times 8$	-0.77	80.01	11.83	

Table S2: The chemical formula, space group, supercell for AIMD calculation, **q**-grid for κ_L calculation, formation energy (FE), average atomic mass and κ_L (300 K) of the screened 26 candidates without LRI.

Chemical	Space Group	Super Cell	q -grid	FE	Mass	$\kappa_L~({ m W/mK})$
Formula				(eV/atom)	(g/mol)	
Al_2Os_1	139	$3 \times 3 \times 5$	$14\times14\times19$	-0.74	81.39	10.53
$\mathrm{As}_{1}\mathrm{Ga}_{1}$	216	$4 \times 4 \times 4$	$15 \times 15 \times 15$	-0.44	72.32	40.92
As_2K_6	194	$3 \times 3 \times 2$	$14\times14\times7$	-0.62	48.05	0.61
As_2Li_6	194	$3 \times 3 \times 2$	$15 \times 15 \times 6$	-1.18	23.99	3.92

B_1Sb_1	216	$4 \times 4 \times 4$	$15\times15\times15$	-0.34	66.28	457.17
C_1Hf_1	216	$4 \times 4 \times 4$	$15 \times 15 \times 15$	-1.78	95.25	77.13
$\mathrm{C}_1\mathrm{Ru}_1$	216	$4 \times 4 \times 4$	$15 \times 15 \times 15$	-1.09	56.54	41.68
$C_1 Zr_1$	216	$4 \times 4 \times 4$	$15 \times 15 \times 15$	-1.67	51.62	98.17
$\mathrm{Fe}_2\mathrm{Sb}_4$	58	$2 \times 2 \times 5$	$10\times9\times17$	-1.48	99.78	9.12
$\mathrm{Fe}_{2}\mathrm{Te}_{4}$	58	$3 \times 2 \times 4$	$10 \times 9 \times 14$	-0.65	103.68	11.51
$\operatorname{Ga}_1\operatorname{Sb}_1$	216	$4 \times 4 \times 4$	$14 \times 14 \times 14$	-0.74	95.74	49.19
$\mathrm{Ga}_4\mathrm{Se}_4$	187	$5 \times 5 \times 1$	$19\times19\times4$	-0.92	74.34	16.71
$\mathrm{Ge}_2\mathrm{Si}_2$	186	$5 \times 5 \times 2$	$18 \times 18 \times 8$	-0.46	50.35	106.45
$\mathrm{In}_1\mathrm{P}_1$	216	$4 \times 4 \times 4$	$15 \times 15 \times 15$	-2.00	72.90	90.86
$\mathrm{In}_{2}\mathrm{P}_{2}$	186	$5 \times 5 \times 2$	$15\times15\times7$	-1.99	72.90	80.78
In_4Se_4	194	$5 \times 5 \times 1$	$17\times17\times5$	-0.83	96.89	11.83
$\mathrm{K}_{3}\mathrm{Sb}_{1}$	225	$3 \times 3 \times 3$	$11 \times 11 \times 11$	-0.94	59.76	0.93
$K_4 Te_4$	194	$3 \times 3 \times 2$	$15\times15\times7$	-1.10	83.35	0.48
$\mathrm{K}_6\mathrm{Sb}_2$	194	$3 \times 3 \times 2$	$14\times14\times7$	-0.96	59.76	0.51
${\rm Li}_6{\rm P}_2$	194	$3 \times 3 \times 2$	$15\times15\times7$	-2.01	13.00	4.03
Mo_2Te_4	194	$5 \times 5 \times 1$	$19\times19\times4$	-0.64	117.05	15.72
$\mathrm{Ni}_{2}\mathrm{P}_{4}$	15	$2 \times 3 \times 3$	$13 \times 13 \times 16$	-2.82	40.21	26.32
P_4Pd_2	15	$3 \times 3 \times 2$	$13 \times 13 \times 10$	-2.81	56.12	23.22
Pt_2S_2	131	$5 \times 5 \times 2$	$14 \times 14 \times 8$	-1.18	113.57	58.20
$\mathrm{Ru}_{2}\mathrm{Te}_{4}$	58	$3 \times 2 \times 4$	$11 \times 10 \times 14$	-0.58	118.76	18.34
$\mathrm{Si}_1\mathrm{Sn}_1$	216	$4 \times 4 \times 4$	$14 \times 14 \times 14$	-0.17	73.40	83.18

Figure S1: The κ_L of 26 materials without LRI versus the average atomic mass at 300K. The blue areas represent highly localized electrons in the material with extremely flat valence bands.

Figure S2: (a) Crystal structure and (b) band structure of K_3Sb . (c) Crystal structure and (d) band structure of Li_3Sb .

Figure S3: (a) The mode-resolved group velocity of $HfSe_2$ along the high symmetry path. (b) Frequency dependence of cumulative κ_L . (c) Phase space of $HfSe_2$ with and without the LRI of Se-Se.

Figure S4: (a) Crystal structure of 2H-MoTe₂. (b) Normalized trace of IFCs versus atomic distance at 300 K for the Te atom. (c) Phonon dispersion for 2H-MoTe₂ at 300 K. (d) Normalized channel resolved phase space for 2H-MoTe₂ and HfSe₂.

Figure S5: (a) Phonon dispersion of Mg_3Sb_2 with (1), (2), (3) LRI, without (3) and without (2), (3) LRI. The used cut-off radii are 10.00 Å, 5.90 Å and 4.79 Å, respectively. (b) The frequency dependent Grüneisen parameters with and without (1), (2), (3) LRI. The cut-off radii are used 10.00Å and 4.59 Å, respectively.

Figure S6: Visualization of vibration modes for Mg₃Sb₂.

Figure S7: Electronic DOS of Mg_3Sb_2 contributed by Mg-s, Sb-s and Sb-p orbitals.

Figure S8: Electronic DOS of Mg₃Sb₂ and CaMg₂Sb₂ contributed by A, M and X-site atoms in formula AM_2X_2 .

Figure S9: (a) Crystal structure of Mg_2Ge from side view. (b) Normalized trace of IFCs versus atomic distance for Mg atom.

Figure S10: (a) Crystal structure of Pnma-GeSe from side view. (b) Normalized trace of IFCs versus atomic distance for Se and Ge atoms.

Figure S11: (a) Crystal structure of InP with space group 186. (b) Normalized trace of IFCs versus atomic distance at 300 K for the P atom. (c) Phonon dispersion for InP at 300 K. (d) Normalized channel resolved phase space for InP and *R3m*-GeSe.

Figure S12: Visualization of vibration modes for R3m-GeSe.

Figure S13: (a) The band structure of $BaSe_2$. (b) The isosurfaces of the VBM electronic wavefunctions.

Figure S14: (a) Crystal structure of NaS from side view. (b) Normalized trace of IFCs versus atomic distance for S atoms. (c) Phonon dispersion of NaS with S-S LRI, without Se-Se (7.53 Å), and without Se-Se (5.39 Å) LRI at 300 K. The used cut-off radii are 10.00 Å, 7.52 Å and 5.38 Å, respectively.

Figure S15: Phonon dispersion of $BaSe_2$ with Se-Se LRI, without Se-Se (7.92Å) and without Se-Se (5.50 Å) LRI at 300 K. The used cut-off radii are 10.00Å, 7.91Å and 5.49 Å, respectively.

Figure S16: The calculated κ_L of the screened 75 materials with the **q**-grid in Table S1 and the **q**-grid in Table S1 to add 2 in each of the three directions.

References

- Yang, X.; Dai, Z.; Zhao, Y.; Liu, J.; Meng, S. Low lattice thermal conductivity and excellent thermoelectric behavior in Li3Sb and Li3Bi. J. Phys. Condens. Matter 2018, 30, 425401.
- (2) Navrátil, J.; Horák, J.; Plecháček, T.; Kamba, S.; Lošt'ák, P.; Dyck, J.; Chen, W.; Uher, C. Conduction band splitting and transport properties of Bi2Se3. J. Solid State Chem. 2004, 177, 1704–1712.
- (3) Rittiruam, M.; Vora-Ud, A.; Impho, W.; Seetawan, T. Prediction of thermal conductivity of Mg2X (X = Ge and Sn) by molecular dynamics. *Integr. Ferroelectr.* 2015, 165, 61–72.
- (4) Zhang, M.; Flitcroft, J. M.; Guillemot, S. K.; Skelton, J. M. Thermoelectric properties of Pnma and R3m GeS and GeSe. J. Mater. Chem. C 2023, 11, 14833–14847.

- (5) Shulumba, N.; Hellman, O.; Minnich, A. J. Intrinsic localized mode and low thermal conductivity of PbSe. *Phys. Rev. B* 2017, *95*, 014302.
- (6) Skelton, J. M.; Burton, L. A.; Parker, S. C.; Walsh, A.; Kim, C.-E.; Soon, A.; Buckeridge, J.; Sokol, A. A.; Catlow, C. R. A.; Togo, A.; Tanaka, I. Anharmonicity in the high-temperature *Cmcm* phase of SnSe: Soft modes and three-phonon interactions. *Phys. Rev. Lett.* **2016**, *117*, 075502.