Recyclable and Elastic Highly Thermally Conductive Epoxy-based Composite with Covalent-Noncovalent Interpenetrating Network

Fubin Luo ^{1*}, Wenqi Cui ^{1,2}, Yingbing Zou ^{1,2}, Hongzhou Li ^{1,2}, Qingrong Qian²,

Qinghua Chen¹

¹ Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China

² Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, People's Republic of China

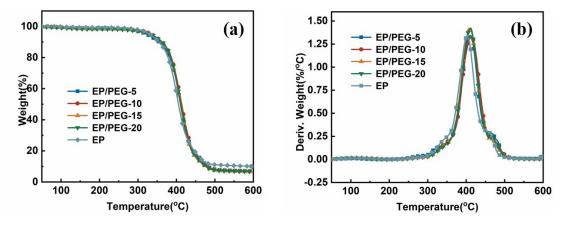


Figure S1TGA and DTG curves

^{*} Corresponding author, E-mail address: luofubin@fjnu.edu.cn;

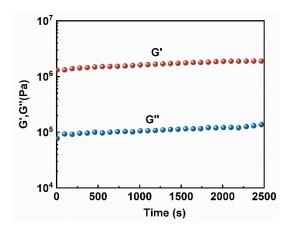
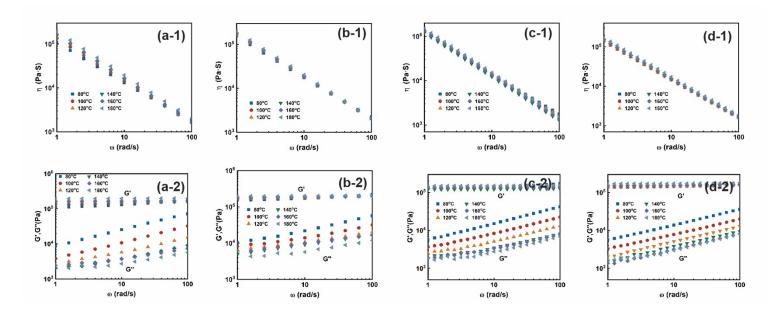
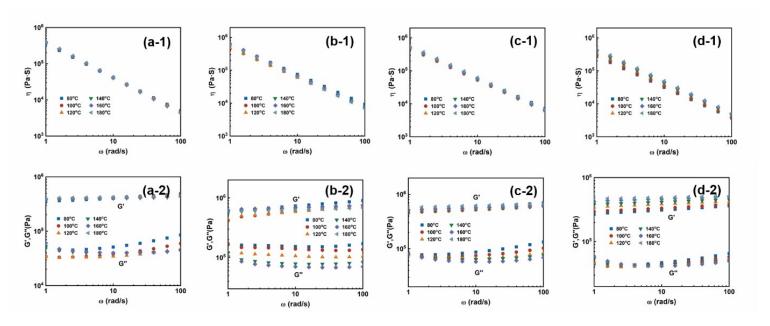




Figure S2 time-resolved rheological test results at 180 °C

Figure S3 small-amplitude oscillatory shear of (a-1, a-2) EP/PEG-5; (b-1, b-2) EP/PEG-10; (c-1, c-2) EP/PEG-15; (d-1, d-2) EP/PEG-20

Figure S4 small-amplitude oscillatory shear of (a-1, a-2) EP/PEG20BN30LM5; (b-1, b-2) EP/PEG20BN30LM10; (c-1, c-2) EP/PEG20BN30LM15; (d-1, d-2) EP/PEG20BN30LM20