Electronic Supplementary Information (ESI)

Intramolecular Exciplex Featuring a bis-sp³ C-Locked

Acceptor-Donor-Acceptor Sandwich

Feng-Ming Xie, Han-Yang Wang, Hao-Ze Li, Kai Zhang, Yang Shen, Jianhua Zou, Yan-Qing Li,* Jian-Xin Tang*

[*] Dr. F.-M. Xie, H.-Y. Wang, Dr. Y. Shen, Prof. J.-X. Tang Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou, Jiangsu 215123 (P. R. China) E-mail: jxtang@suda.edu.cn (J.-X. Tang)

H.-Z. Li, Prof. Y.-Q. Li School of Physics and Electronic Science East China Normal University Shanghai 200062 (P. R. China) E-mail: yqli@phy.ecnu.edu.cn (Y.-Q. Li)

K. Zhang, Prof. J. X. Tang
Macao Institute of Materials Science and Engineering (MIMSE)
Faculty of Innovation Engineering
Macau University of Science and Technology
Taipa, Macau 999078 (P. R. China)
E-mail: jxtang@must.edu.mo (J.-X. Tang)

Dr. J. Zou Guangzhou New Vision Opto-Electronic Technology Co., Ltd. Guangzhou, Guangdong 510730 (P. R. China)

Table of Contents

Figure S1. ¹H NMR spectrum of compound 1.

Figure S2. MALDI-TOF MS spectrum of compound 1.

Figure S3. ¹H NMR spectrum of dSFQP.

Figure S4. ¹³C NMR spectrum of dSFQP.

Figure S5. MALDI-TOF MS spectrum of dSFQP.

Figure S6. Ellipsoid plot of dSFQP obtained by single crystal diffraction.

Figure S7. Single-crystal structure analysis of dSFQP.

Figure S8. a) Optimized ground state configuration and b) optimized excited state configuration for dSFQP. c) Potential energy surfaces in the ground and the excited states. Reorganization energy= $\lambda_{s} + \lambda_{s}^{*}$.

Figure S9. The reduced density gradient (RDG) isosurfaces and scattering diagrams of **dSFQP** based on crystal structure.

Figure S10. TGA curves of dSFQP.

Figure S11. Cyclic voltammetry (CV) diagrams of dSFQP.

Figure S12. PL spectra of dSFQP in various solvents (n-H: n-hexane, Tol: toluene,

Diox: 1,4-dioxane, THF: tetrahydrofuran, DCM: dichloromethane).

Figure S13. Lifetime and spectra of **dSFQP**-doped film as a function of temperature under high vacuum.

Figure S14. Arrhenius plot of the k_{RISC} of dSFQP in doped film.

Figure S15. a) J-V-L curves and b) EQE versus luminance of devices with different doping concentration.

Figure S16. PE and CE versus luminance of **dSFQP** with 20 wt% and 100 wt% doping concentrations.

Figure S17. Measured horizontal emitting dipole orientation ($\Theta_{//}$) of 20 wt% doped dSFQP film.

 Table S1. List of raw material information.

 Table S2. Crystal data and structure refinement for dSFQP.

Table S3. Photophysical characteristics of **dSFQP** and 2PXZ-2TRZ.

Table S4. Device performance of OLEDs based on dSFQP at different doping concentrations.

Table S5. OLED performances of the reported TSCT-TADF by vacuum evaporation.

Synthesis and characterization

Drug name	Drug purity	Drug manufacturers		
1,4-dibromo-2,5-difluorobenzene	98.0%	Bidepharm		
Phenoxazine	98.0%	Aladdin		
2,4-Diphenyl-6-(4-(4,4,5,5-tetramethyl-				
1,3,2-dioxaborolan-2-yl)phenyl)-1,3,5-	99.0%	Aladdin		
triazine				
2-Bromo-9-fluorenone	98.0%	Alpha		
Tetrahydrofuran Anhydrous (stabilized with	99.0%	TCI		
BHT)	99.070			
1,4-Dioxane	99.0%	Enox		
Tert-Butyllithium solution	1.3 M in Pentane	Aladdin		
Potassium carbonate	99.0%	Alpha		
Tetrakis(triphenylphosphine)palladium(0)	99.0%	J&K		
Hydrochloric acid	36.0%	Enox		
Acetic Acid	99.0%	Enox		

 Table S1. List of raw material information.

Chemical Synthesis: All the reagents purchased from commercial sources were used without further purification. All the reactions were performed under nitrogen atmosphere, and the crude products were purified by column chromatography before characterizations and device fabrication.

Measurements and Characterization: The chemical structures were determined by ¹H and ¹³C nuclear magnetic resonance (NMR) spectra with Bruker AVANCE III type NMR Spectrometer in CDCl₃ solution, Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer, Elemental analysis test using Vario Micro cube elemental analyzer. and single-crystal X-ray diffraction. Ultraviolet–visible

(UV-Vis) absorption and photoluminescence (PL) spectra were recorded at room temperature with a Perkin-Elmer Lambda 750 UV-Vis spectrophotometer and a FM-4 type fluorescence spectrophotometer (JY company, French), respectively. The optical bandgap (Eg) was determined from the onset of the absorption spectra. Low-temperature phosphorescence spectra were measured with a FLS 920 spectrometer (Einburgh Corporation) in neat film at 77 K. The absolute photoluminescence quantum yields (PLQYs) of the doped and non-doped films were obtained with a C9920-02G type fluorescence spectrophotometer (HAMAMASTU, Japan) with an integrating sphere at room temperature under nitrogen atmosphere. Transient PL decay spectra were measured with a Quantaurus-Tau fluorescence lifetime spectrometer (C11367-03, Hamamatsu Photonics) with a pulse wavelength of 373 nm, pulse width of 100 ps. The prompt and delayed PL spectra were measured by using a streak camera system (Hamamatsu Photonics, C4334) equipped with a cryostat and an excitation wavelength of 373 nm under a vacuum.

Theoretical Calculations: All the quantum chemical calculations were performed using a DFT method in Gaussian 09 program package. The ground-state geometries were optimized by using a TD-DFT approach at the B3LYP/6-311G(d,p) level. The singlet and triplet excited-state properties were calculated according to the optimized geometries.

Cyclic voltammetry measurements: The HOMO and LUMO levels were determined from the Cyclic voltammetry (CV) measurements. CV measurements were conducted on a RST 3100 electrochemical analysis equipment at room temperature with a

conventional three electrode configuration, consisting of a platinum disk working electrode, a platinum wire counter electrode, a Ag/AgCl reference electrode, and the supporting electrolyte of tetrabutylammonium hexafluorophosphate (0.1 M). The cyclic voltammograms were obtained at a scanning rate of 50 mV s⁻¹ with DCM solution.

Thermal properties: Thermal gravimetric analysis (TGA) was carried out with an HCT-2 instrument at a heating rate of 10 °C min⁻¹ under nitrogen atmosphere.

Device Fabrication and Measurements: OLEDs were fabricated on the patterned indium-tin-oxide (ITO)-coated glass substrates with a sheet resistance of ~15 Ω per square. The ITO-coated glass substrates were successively cleaned in an ultrasonic bath with acetone, ethanol, and deionized water, and then dried in an oven at 110 °C. After the UV-ozone treatment for 15 minutes, the ITO-coated glass substrates were transferred into a high-vacuum deposition chamber (base pressure $\leq 2 \times 10^{-6}$ mbar) for the thermal deposition of organic materials and metal electrodes through a shadow mask. After the film depositions, the fabricated devices were transferred to the nitrogenfilled glovebox for the encapsulation with a glass cap and epoxy glue. Current densityvoltage-luminance (J-V-L) characteristics and EL spectra of the devices were measured simultaneously with a source meter (Keithley model 2400) and a luminance meter/spectrometer (PhotoResearch PR670). The CIE 1931 colour coordinates were obtained from the EL spectra.

Scheme S1. The synthetic route of dSFQP.

Synthesis of 10,10'-(2,5-dibromo-1,4-phenylene)bis(10H-phenoxazine) (1):

A mixture of 10H-phenoxazine (3.37 g, 18.45 mmol) and NaH (0.88 g, 37.90 mmol) were stirred for 30 min in DMF (40 mL) in three-neck bottle under nitrogen at 0 °C. Then the 1,4-dibromo-2,5-difluorobenzene (2.00 g, 7.38 mmol) was injected into the bottle and the reaction mixture was heated up to 120 °C and reacted for 24 h. After cooled down to room temperature, filtered and the solid washed with n-Hexane (n-H). The solid was purified by column chromatography on silica gel eluted with (dichloromethane/n-H, 1:4) to give the **1** (4.12 g, 6.87 mmol, yield: 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 2H), 6.87 – 6.70 (m, 12H), 6.21 – 6.02 (m, 2H), 5.91 (ddd, J = 14.5, 6.9, 1.6 Hz, 2H). MALDI-TOF-MS (m/z) of C₃₀H₁₈Br₂N₂O₂ for [M]+: calcd. 597.97; found, 598.606.

Synthesis of 2-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9H-fluoren-9-one (2):

A mixture of 1-bromo-9-fluorenone (1.50 g, 3.45 mmol), 2,4-diphenyl-6-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,3,5-triazine (1.65 g, 3.80 mmol), $Pd(PPh_3)_4$ (0.07 g, 0.06 mmol), and K_2CO_3 (1.26 g, 9.11 mmol) were added in 150 mL

three-neck bottle under nitrogen. Then, a mixed solvent system of 1,4-dioxane and H₂O (v/v =10:1) were injected into the bottle, and the reaction mixture was refluxed for 24 h. After cooling to room temperature, the mixture was poured into the water and extracted for twice with dichloromethane, and then the combined organic layers were evacuated to dryness and the resulting product was purified by column chromatography on silica gel with (dichloromethane/n-H, 1:1) to afford **2** (2.98 g, 6.12 mmol, yield: 91%).

Synthesis of (9R,12'R)-1,1''-bis(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10'-(10H-phenoxazin-10-yl)dispiro[fluorene-9,8'-benzo[9,1]quinolizino[3,4,5,6,7klmn]phenoxazine-12',9''-fluorene] (dSFQP):

In a nitrogen glove box, compound 1 (2.00 g, 3.42 mmol) was dissolved in 30 mL of dry tetrahydrofuran in a 250 mL reaction flask. The reaction flask was transferred to a low-temperature reactor, and after the temperature was stabilized at -78 °C, 1 M *t*-butyl lithium (13.50 mL, 13.50 mmol) was slowly added dropwise by a syringe. The resulting mixture was stirred at -78 °C for 2 hours, and then a tetrahydrofuran solution (30 mL) containing compound 2 (4.04 g, 8.50 mmol) was added over 30 minutes. The mixture was stirred overnight at room temperature. 10 mL of anhydrous ethanol was added to the mixture to stop the reaction, and the solvent was evaporated. The obtained solid was removed in 200 mL of dichloromethane and washed with 50 mL of anhydrous ethanol three times. The obtained trustworthiness can be directly used in the next step without further purification. The crude product was dissolved in 30 mL acetic acid, heated to

130 °C stirred for 30 min, and added with 8 mL hydrochloric acid (36%). After stirring and relaxing for 24 hours, the reaction solution was washed with ice water, extracted, and washed with n-hexane. The obtained solid was further purified by column chromatography using (dichloromethane/n-H, 1:4) as eluent, and got the product dSFQP (0.42 g, 0.31 mmol, yield: 18%). ¹H NMR (400 MHz, CDCl₃) δ 8.88 – 8.61 (m, 12H), 8.61 – 8.47 (m, 4H), 8.12 (d, *J* = 7.9 Hz, 2H), 7.88 (t, *J* = 8.3 Hz, 2H), 7.75 (d, J = 7.6 Hz, 2H), 7.71 - 7.61 (m, 10H), 7.59 - 7.54 (m, 8H), 7.43 - 7.39 (m, 6H),7.32 (d, J = 7.7 Hz, 2H), 7.27 - 7.11 (m, 4H), 6.87 - 6.64 (m, 4H), 6.53 (d, J = 8.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.42, 171.42, 171.21, 171.13, 145.26, 143.35, 141.92, 140.14, 139.57, 136.40, 136.33, 136.20, 135.96, 134.80, 132.43, 132.38, 132.26, 129.02, 128.96, 128.91, 128.84, 128.71, 128.59, 128.54, 128.43, 128.38, 128.14, 128.00, 127.85, 127.68, 127.28, 127.20, 124.94, 122.86, 120.65, 119.94, 119.90, 119.28, 114.82, 112.57, 53.12, 53.03. MALDI-TOF-MS (m/z) of C₉₈H₅₈N₈O₂ for [M]+: calcd. 1378.471; found, 1378.886. Elemental analysis calcd. for C₉₈H₅₈N₈O₂: C, 85.32; H, 4.24; N, 8.12; found: C 85.01, H 4.20, N 7.98.

Figure S1. ¹H NMR spectrum of compound 1.

Figure S2. MALDI-TOF MS spectrum of compound 1.

Figure S3. ¹H NMR spectrum of dSFQP.

Figure S4. ¹³C NMR spectrum of dSFQP.

Figure S5. MALDI-TOF MS spectrum of dSFQP.

Figure S6. Ellipsoid plot of dSFQP obtained by single crystal diffraction.

$2(C_{98}H_{58}N_8O_2) \cdot 2[CH_2Cl_2] \cdot 1[C_2H_6O] \cdot 2[CH_2Cl_2]$	Z = 1
$M_r = 3150.79$	F(000) = 1624.052
Triclinic, P ⁻¹	$D_{\rm x} = 1.356 {\rm ~Mg} {\rm ~m}^{-3}$
<i>a</i> = 14.2142 (8) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
<i>b</i> = 14.3406 (7) Å	Cell parameters from 9933 reflections
c = 19.3048 (9) Å	$\theta = 2.2 - 26.4^{\circ}$
$\alpha = 97.833 \ (2)^{\circ}$	$\mu = 0.22 \text{ mm}^{-1}$
$\beta = 93.512 \ (2)^{\circ}$	<i>T</i> = 100 K
γ = 99.176 (2)°	Block, yellow
V = 3834.6(3) Å ³	$0.09 \times 0.05 \times 0.04 \text{ mm}$
Bruker D8 VENTURE diffractometer	11025 reflections with $I^{3} 2u(I)$
f and w scans	$R_{\rm int} = 0.056$
Absorption correction: multi-scan SADABS2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0718 before and 0.0565 after correction. The Ratio of minimum to maximum transmission is 0.9424. The l/2 correction factor is Not present.	$\theta_{max} = 26.0^\circ, \theta_{min} = 1.9^\circ$
Tmin = 0.703, Tmax = 0.745	$h = -17 \rightarrow 17$
45300 measured reflections	$k = -17 \rightarrow 15$
15041 independent reflections	<i>l</i> = -23→24
Refinement on F^2	1456 restraints
Least-squares matrix: full	116 constraints
$R[F^2 > 2\sigma(F^2)] = 0.083$	H-atom parameters constrained
$wR(F^2) = 0.194$	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2 + 11.0168P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} = -0.0005$
15041 reflections	$\Delta \Box_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
974 parameters	$\Delta \Box_{\min} = -0.41 \text{ e } \text{\AA}^{-3}$

 Table S2. Crystal data and structure refinement for dSFQP. (CCDC number: 2294792)

Figure S7. Single-crystal structure analysis of dSFQP.

Figure S8. a) Optimized ground state configuration and b) optimized excited state configuration for dSFQP. c) Potential energy surfaces in the ground and the excited states. Reorganization energy= $\lambda_{s} + \lambda_{s}^{*}$.

Figure S9. The reduced density gradient (RDG) isosurfaces and scattering diagrams of **dSFQP** based on crystal structure.

Figure S10. TGA curves of dSFQP.

Figure S11. Cyclic voltammetry (CV) diagrams of dSFQP.

Figure S12. PL spectra of **dSFQP** in various solvents (n-H: n-hexane, Tol: toluene, Diox: 1,4-dioxane, THF: tetrahydrofuran, DCM: dichloromethane).

Figure S13. Lifetime and spectra of **dSFQP**-doped film as a function of temperature under high vacuum.

Figure S14. Arrhenius plot of the k_{RISC} of dSFQP in doped film.

Films ^a	ns ^a Φ_p		τ_{p}	τ_{d}	k _r	<i>k</i> _{nr}	$k_{\rm ISC}$	$k_{\rm RISC}$
	[%] ^b	[%] ^b	[ns] ^c	[µs]°	$[10^6 \ s^{-1}]^d$	$[10^6 \text{ s}^{-1}]^e$	$[10^6 \ s^{-1}]^f$	$[10^6 \ s^{-1}]^g$
20 wt% dSFQP	32	64	80	3.15	4.23	0.17	8.08	0.97
100wt% dSFQP	13.7	24.3	35	0.5	4.40	7.18	16.99	5.95
2PXZ-2TRZ	31	63	107.72	5.27	2.99	0.19	6.10	0.59

Table S3. Photophysical characteristics of dSFQP and 2PXZ-2TRZ.

^a 20 wt% **dSFQP** doped in mCBP film, 100 wt% **dSFQP** film and 30 wt% 2PXZ-2TRZ doped in PPF film.

^b Quantum yields for prompt fluorescence (Φ_p) and delayed fluorescence (Φ_d) for the neat film, $\Phi_p + \Phi_d = \Phi_{PL}$.

 c Lifetime of the prompt component (τ_p) and delayed component (τ_d) as determined from the transient PL.

^d Radiative rate constants of S₁, $k_r = \Phi_p/\tau_p + \Phi_d/\tau_d$.

^e Nonradiative rate constants of S₁, $k_{nr} = k_r(1 - \Phi_{PL})/\Phi_{PL}$.

^fRate constants for ISC (S₁ \rightarrow T₁), $k_{\text{ISC}} = k_{\text{p}} - k_{\text{r}} - k_{\text{nr}}$.

^g Rate constants for RISC (T₁ \rightarrow S₁), $k_{\text{RISC}} = k_{\text{p}}k_{\text{d}}/k_{\text{ISC}} \cdot \Phi_{\text{d}}/\Phi_{\text{p}}$.

Figure S15. a) J-V-L curves and b) EQE versus luminance of devices with different doping concentration.

Table	S4.	Device	performance	of	OLEDs	based	on	dSFQP	at	different	doping
concen	trati	ons.									

EML	$V_{on}{}^{a}$	$L_{max}^{\ \ b}$	EQE°	CEd	PEd	$\lambda_{EL}{}^e$	CIE ^e
	[V]	[cd m ⁻²]	[%]	[cd A ⁻¹]	[lm W ⁻¹]	[nm]	(x, y)
5 wt%	4.5	48980	19.3/15.8	48.7	30.2	534	(0.34, 0.55)
10 wt%	3.9	59230	21.5/16.9	56.5	43.4	540	(0.36, 0.55)
15 wt%	3.5	56560	23.2/19.6	58.6	46.0	544	(0.38, 0.55)
20 wt%	3.2	60260	28.5/27.7	93.3	78.8	550	(0.39, 0.55)
25 wt%	3.2	59320	26.2/24.6	84.9	71.0	550	(0.39, 0.55)
100 wt%	2.8	37740	10.7/10.3	32.8	28.5	562	(0.45, 0.53)

^a Turn-on voltage. ^b Maximum luminance. ^c EQE at maximum and 1,000 cd m⁻². ^d Maximum CE and PE. ^e EL peak and CIE coordinates were recorded at 5,000 cd m⁻².

Figure S16. PE and CE versus luminance of **dSFQP** with 20 wt% and 100 wt% doping concentrations.

Figure S17. Measured horizontal emitting dipole orientation ($\Theta_{//}$) of 20 wt% doped dSFQP film.

	N Z	E	QE (%)		EOE	2	т	
Emitters	V _{on}	Maariaaaaa	1000 cd	10000	$EQE_{roll-off}$	λ_{EL}	L _{max}	Ref.
	[v]	Maximum	m ⁻²	cd m ⁻²	(%))	[nm]	[cd m ²]	
dSFQP	3.2	28.5	27.7	17.5	2.8	550	60260	This work
dSFQP ^a	2.8	10.7	10.3	8.9	4.8	562	37740	This work
2PXZ-2TRZ	3.0	27.1	17.7	10.4	34.7	508	21620	[1]
2PXZ-2TRZ ^a	3.3	10.2	9.9	7.2	2.9	518	26420	[1]
SFST	3.6	12.5	11.3		9.6	508		[2]
SFOT	4.0	23.1	21.3		7.8	508		[2]
DM-B	2.8	27.4	24.4		10.9	488		[3]
DM-Bm	2.6	21.7	19.7		9.2	500	—	[3]
DM-G	3.0	18.5	15.4		16.8	500	—	[3]
DM-X	3.4	4.3				500		[3]
STF-DPS	3.8	2.1	—			468	—	[4]
STF-DBTS	4.0	10.3	—			488	—	[4]
DM-BD1	3.1	28.0	22.7		18.9			[5]
DM-BD2	3.1	26.6	22.4		15.8		—	[5]
SDMAC	3.4	28.4	17.1		39.8	492	5997	[6]
Spiro-2P-BT- TPA	3.3	6.6	3.0		54.5	520		[7]
SAT-DAC	32	22.6	184	74	199	520	9896	[8]
SATX-DAC	3.5	20.9	17.0	9.5	18.6	524	15540	[8]
1	3.0	20.9	13.7		34.4	494	8600	[0]
2	2.8	16.1	13.5		16.1	527	11000	[9]
3	2.9	17.7	13.3		24.8	503	8800	[9]
4	2.9	20.0	15.6		22.0	507	11000	[9]
5	2.7	13.2	11.7		11.4	550	39000	[9]
SPS	3.6	8.5	2.0		76.5	520	1678	[10]
SPO	3.9	17.8	14.2		20.2	528	8260	[10]
SPON	3.7	14.4	12.7		11.8	552	8808	[10]
TRZ-STFMe	2.8	29.6	26.5		10.4	500	22940	[11]
TRZ-STFPh	3.2	23.1	13.3		42.4	494	7280	[11]
DPXZ-QX		20.56	5.43		73.6	597	15400	[12]
DPXZ-2QX		23.16	14.39		37.8	609	28400	[12]
TpAT-tFFO		19.2	18.1	14.4	5.4	498	33870	[13]
PXZ-CTZ		16.57	9.93		40.1		14500	[14]
DPXZ-CTZ		19.71	9.25		53.1		3500	[14]
DPXZ-BO		23.96	20.23		15.6		24500	[14]
dCz-Xo-TRZ	_	27.8	23.9		14.0	477		[15]
mCz-Xo-TRZ		21.0	17.0		19.0	464		[15]
2tDMG	_	30.8	28.5		7.5	504		[16]
3tDMG		26.3	23.2		11.8	518		[16]

Table S5. OLED performances of the reported TSCT-TADF by vacuum evaporation.

^a Neat emitter as EML. ^b Efficiency roll-off at 1000 cd m⁻².

References

- F. M. Xie, H. Z. Li, K. Zhang, Y. Shen, X. Zhao, Y. Q. Li, J. X. Tang, *Angew. Chem. Int. Ed.* 2022, *61*(49), e202213823.
- S. Yang, Y. Wang, C. Peng, Z. Wu, S. Yuan, Y. Yu, H. Li, T. Wang, H. Li, Y. Zheng, Z. Jiang, L. Liao, J. Am. Chem. Soc. 2020, 142(41), 17756-17765.
- X. Tang, L. Cui, H. Li, A. J. Gillett, F. Auras, Y. Qu, C. Zhong, S. T. E. Jones,
 Z. Jiang, R. H. Friend, L. Liao, *Nat. Mater.* 2020, 19(12), 1332-1338.
- [4] S. Y. Yang, Q. S. Tian, Y. J. Yu, S. N. Zou, H. C. Li, A. Khan, Q. H. Wu, Z. Q. Jiang, L. S. Liao, *J. Org. Chem.* 2020, 85(16), 10628-10637.
- [5] X. Q. Wang, S. Y. Yang, Q. S. Tian, C. Zhong, Y. K. Qu, Y. J. Yu, Z. Q. Jiang,
 L. S. Liao, Angew. Chem. Int. Ed. 2021, 60(10), 5213-5219.
- S. Y. Yang, Z. Q. Feng, Z. Fu, K. Zhang, S. Chen, Y. J. Yu, B. Zou, K. Wang, L.
 S. Liao, Z. Q. Jiang, *Angew. Chem. Int. Ed.* 2022, *61*(34), e202206861.
- [7] S. Yang, Y. Zhang, F. Kong, Y. Yu, H. Li, S. Zou, A. Khan, Z. Jiang, L. Liao, *Chem. Eng. J.* 2021, 418, 129366.
- [8] R. Wang, Z. Li, T. Hu, L. Tian, X. Hu, S. Liu, C. Cao, Z. Zhu, J. Tan, Y. Yi, P.
 Wang, C. Lee, Y. Wang, ACS Appl. Mater. Interfaces 2021, 13(41), 49066-49075.
- [9] Y. Song, M. Tian, R. Yu, L. He, ACS Appl. Mater. Interfaces 2021, 13(50), 60269-60278.
- [10] J. Liu, Z. Feng, C. Peng, Y. Yu, S. Yang, Z. Jiang, L. Liao, *Chin. Chem. Lett.* 2023, 34(6), 107634.
- [11] W. Chen, M. Zheng, Y. Wu, R. Wang, J. Jin, S. Chen, B. Liu, J. Chen, Y. Huo,
 S. Ji, *Chem. Eng. J.* 2024, 480, 148314.
- [12] C. Jiang, J. Miao, D. Zhang, Z. Wen, C. Yang, K. Li, *Research* 2022, 2022, 9892802.
- [13] Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka, H. Kaji, *Nat. Photonics* 2020, *14*(10), 643-649.
- [14] C. Wu, W. Liu, K. Li, G. Cheng, J. Xiong, T. Teng, C. M. Che, C. Yang, Angew.

Chem. Int. Ed. 2021, 60(8), 3994-3998.

- [15] T. Huang, Q. Wang, G. Meng, L. Duan, D. Zhang, *Angew. Chem. Int. Ed.* 2022, 61(12), e202200059.
- [16] C. C. Peng, S. Y. Yang, H. C. Li, G. H. Xie, L. S. Cui, S. N. Zou, C. Poriel, Z. Q. Jiang, L. S. Liao, Adv. Mater. 2020, 32(48), 2003885.