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S1 Ground-State Crystal Structure 

For the cubic phase of antiperovskite derivatives, the presence of imaginary 

frequencies in the phonon dispersion curves corresponds to structural instabilities 

and indicates a lower symmetry ground state. To stabilize these unstable modes, 

we adopted the approach of freezing individual or pairs of unstable phonon 

modes1,2. Specifically, we displaced the atoms according to the force constant 

eigenvectors and created a pool of subgroup structures. Each of the obtained 

subgroup structures was then subjected to a full structural relaxation. 

Subsequently, the lowest energy structure was selected for phonon calculations to 

further check for additional imaginary modes. This process was repeated 

iteratively until phonon dispersion curves without imaginary frequencies were 

achieved. 

 
 
S2 Machine Learning (ML) Procedures 

S2.1 Compositional Descriptors and Feature Engineering 

The descriptors used for training the ML model were automatically generated 

from the chemical compositions using a composition-based feature vector (CBFV) 

approach3. The CBFV is a widely adopted method for transforming chemical 

compositions into usable features and is generated from the descriptive statistics 

(such as maximum, minimum, composition-weighted average) of a compound’s 

constituent element properties. Finally, a total of 264 descriptors were generated 

to construct the initial descriptor set (see Table S6) for ML. 

 

To reduce the dimension of the descriptor set and avoid overfitting, feature 

engineering is a crucial step to improve the fitting accuracy and performance of 

the ML model. Initially, we employed the analysis of variance (ANOVA) method4 

from the scikit-learn package5 to eliminate all features whose variance falls below 

a predefined threshold (threshold = 0.01). Subsequently, the Pearson correlation 

coefficients6 (ρ) were calculated for each feature pair to identify and remove 
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redundant raw features. Redundant descriptors were defined as those with |ρ| ≥ 

0.90. Lastly, we utilized the sequential forward selection (SFS) technique from 

the mlxtend package7 to further obtain the optimal set of descriptors (see Figure 

S21a and c). 

 

S2.2 ML Model Selection 

We chose the eXtreme Gradient Boosting (XGBoost) algorithm8 as the ML 

regression model in our work due to its accuracy, efficiency, and ease of use. 

Currently, XGBoost-based ML models have demonstrated excellent accuracy in 

predicting various material properties, such as electrocaloric temperature change9, 

gas separation selectivity10, perovskite catalytic properties11, Debye temperature12, 

and thermal conductivity13. The Bayesian optimization algorithm in the 

BayesianOptimization package14 was used to optimize hyperparameters with five-

fold cross-validation (see Table S7). The optimal parameters were determined 

based on the highest R2 (the coefficient of determination) value achieved, with 

over 500 steps of Bayesian optimization performed. Additionally, the loss function 

of the XGBoost model for Ehull and Eg, showing the training and validation 

performance over iterations, is presented in Figure S21b and d. 

 

To perform symbolic regression, we adopted the SISSO (Sure Independence 

Screening and Sparsifying Operator) algorithm15, which combines sure 

independence screening (SIS) with the sparsifying operator (SO) to select a 

subspace of descriptors with the largest linear correlation with the targeted 

property. For establishing the feature spaces, we utilized the set of algebraic and 

functional operators given in the following: 

H(m) ≡ {+, -, ×, ÷, √, exp, -1, 2, 3, 4} (1) 
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S2.3 ML Model performance evaluation 

The ML models from the five-fold cross-validation method were evaluated using 

two metrics: the root mean square error (RMSE) and the coefficient of 

determination (R2). These metrics are defined as follows:  

ܧܵܯܴ =  ටଵ
௡

∑ ௜ݕ) − ௜_୮୰ୣ)ଶ௡ݕ
௜ୀଵ  (2) 

ܴଶ =  1 −
∑ ௜ݕ − ௜_୮୰ୣݕ

௡
௜ୀଵ

∑ ௜ݕ − ത௡ݕ
௜ୀଵ

 (3) 

where ݕ௜  and ݕ௜_୮୰ୣ are the real value and predicted result of the sample ݅ , 

respectively, and ݕത is the average of all the real values. 

 

S2.4 Interpretation of the ML Model 

To explain the output of the XGBoost ML model, we performed a SHAP 

(SHapley Additive exPlanations)16 analysis, which is a game theoretic approach. 

This analysis combines feature importance with feature effects, showing the 

distribution of the Shapley values for each feature. Shapley values assign a value 

to each feature in a prediction, indicating how much each feature contributes to 

the difference between the model prediction and the expected prediction. 
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Figure S1. Phonon dispersion curves for the Pm-3m phase of X3NA′3 (X = Mg2+, 

Ca2+, Sr2+, Ba2+ and A′ = F-, Cl-, Br-, I-). 
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Figure S2. Phonon dispersion curves for the Pm-3m phase of X3PA′3 (X = Mg2+, 

Ca2+, Sr2+, Ba2+ and A′ = F-, Cl-, Br-, I-). 
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Figure S3. Phonon dispersion curves for the Pm-3m phase of X3AsA′3 (X = Mg2+, 

Ca2+, Sr2+, Ba2+ and A′ = F-, Cl-, Br-, I-). 
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Figure S4. Phonon dispersion curves for the Pm-3m phase of X3SbA′3 (X = Mg2+, 

Ca2+, Sr2+, Ba2+ and A′ = F-, Cl-, Br-, I-). 
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Figure S5. Phonon dispersion curves for the Pm-3m phase of X3BiA′3 (X = Mg2+, 

Ca2+, Sr2+, Ba2+ and A′ = F-, Cl-, Br-, I-). 

 



 
 

10 
 

 

Figure S6. Calculated band structures for the Pm-3m phase of X3NA′3 (X = 

Mg2+, Ca2+, Sr2+, Ba2+ and A′ = F-, Cl-, Br-, I-), using the HSE06+SOC method. 
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Figure S7. Calculated band structures for the Pm-3m phase of X3PA′3 (X = 

Mg2+, Ca2+, Sr2+, Ba2+ and A′ = F-, Cl-, Br-, I-), using the HSE06+SOC method. 

 

 
 



 
 

12 
 

 

Figure S8. Calculated band structures for the Pm-3m phase of X3AsA′3 (X = 

Mg2+, Ca2+, Sr2+, Ba2+ and A′ = F-, Cl-, Br-, I-), using the HSE06+SOC method. 
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Figure S9. Calculated band structures for the Pm-3m phase of X3SbA′3 (X = 

Mg2+, Ca2+, Sr2+, Ba2+ and A′ = F-, Cl-, Br-, I-), using the HSE06+SOC method. 
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Figure S10. Calculated band structures for the Pm-3m phase of X3BiA′3 (X = 

Mg2+, Ca2+, Sr2+, Ba2+ and A′ = F-, Cl-, Br-, I-), using the HSE06+SOC method. 

 

Table S1. The optimized lattice constants, the energy above the convex hull, 

and HSE06+SOC-calculated band gaps for 38 X3BA′3 antiperovskite derivatives 

(Ehull< 80 meV/atom). The '' symbol indicates phonon stability, while the '' 

symbol indicates phonon instability. 

Materials 
Lattice Constants 

a = b = c (Å) 
Ehull 

(eV/atom) 
Phonon Stability 

Band Gap  

(eV) 

Mg3NF3 4.262  0   5.0409 

Ca3NF3 4.832  0.034   3.2542 

Sr3NF3 5.196  0.064   2.1783 

Mg3PCl3 5.252  0.066   3.1906 

Ca3PCl3 5.715  0   2.7968 

Ca3PBr3 5.901  0   2.5659 

Sr3PCl3 6.056  0   2.4904 

Sr3PBr3 6.233  0   2.3205 

Sr3PI3 6.526  0   1.9408 

Ba3PCl3 6.439  0.037   1.6387 
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Ba3PBr3 6.608  0  1.587 

Ba3PI3 6.888  0   1.3769 

Mg3AsCl3 5.330  0.074   2.9758 

Ca3AsCl3 5.786  0   2.7272 

Ca3AsBr3 5.964  0   2.4896 

Sr3AsCl3 6.125  0   2.4261 

Sr3AsBr3 6.295  0  2.2495 

Sr3AsI3 6.578  0   1.8766 

Ba3AsCl3 6.506  0   1.5959 

Ba3AsBr3 6.667  0   1.5239 

Ba3AsI3 6.937  0   1.3122 

Ca3SbCl3 5.989  0.044   2.6324 

Ca3SbBr3 6.142  0   2.4065 

Ca3SbI3 6.399  0.026   1.9849 

Sr3SbCl3 6.324  0.031   2.3638 

Sr3SbBr3 6.469  0   2.1965 

Sr3SbI3 6.717  0.018   1.8567 

Ba3SbCl3 6.696  0.065   1.5519 

Ba3SbBr3 6.834  0   1.4835 

Ba3SbI3 7.070  0.020   1.2953 

Ca3BiCl3 6.047  0.070   2.2159 

Ca3BiBr3 6.197  0   1.9875 

Ca3BiI3 6.449  0.001   1.5732 

Sr3BiCl3 6.382  0.073   1.9222 

Sr3BiBr3 6.523  0   1.6986 

Sr3BiI3 6.766  0   1.4417 

Ba3BiBr3 6.884  0.003   1.053 

Ba3BiI3 7.114  0   0.8675 

 
 

 

Figure S11. (a) Phonon spectra for the Pm-3m phase of Ba3AsI3, illustrating 

imaginary frequencies at the M and R points. (b) Crystal structure of the 

P4/mbm phase of Ba3AsI3. (c) Phonon spectra for Ba3AsI3 in the P4/mbm phase. 
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Figure S12. (a) Phonon spectra of the Pm-3m phase of Ba3SbCl3, showing 

imaginary frequencies at the M point. (b) Phonon spectra for the P4/mbm phase 

of Ba3SbCl3, displaying imaginary frequencies at the A point. (c) Crystal structure 

of Ba3SbCl3 in the P4/mbm and Immm phases. (d) Phonon spectra for Ba3SbCl3 

in the Immm phase. Note that the arrows indicate that the structures of the 

P4/mbm and Immm phases are derived from the corresponding imaginary 

frequency modes. 
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Table S2. Possible low-energy structures of Ba3PI3 derived from the prototype 

Pm-3m phase based on unstable phonon modes. The total energies are presented 

relative to the energy of the Pm-3m phase. 

Space group Total energy (meV/f.u.) irrep 

Amm2 (No. 38) -1.416 Γସ
ି (a, a, 0) 

Cm (No. 8) -0.919 Γସ
ି (a, a, b) 

P1 (No. 1) -1.681 Γସ
ି (a, b, c) 

P4mm (No. 99) -0.917 Γସ
ି (a, 0, 0) 

Pm (No. 6) -0.915 Γସ
ି (a, b, 0) 

R3m (No. 160) -1.641 Γସ
ି (a, a, a) 

Fmmm (No. 69) -25.472 Rଷ
ା (a, b) 

I4/mcm (No. 140) -25.673 Rଷ
ା (0, a) 

I4/mmm (No. 139) -25.274 Rଷ
ା (a, 0) 

P4/mbm (No. 127) -33.681 Mଶ
ା (a; 0; 0) 

Pmma (No. 51) -0.170 Xହ
ି (a, 0; 0, 0; 0, 0) 

Cc (No. 9) -25.572 Γସ
ି⊕Rଷ

ା (a, a, b|0, c) 
Cm (No. 8) -25.556 Γସ

ି⊕Rଷ
ା (a, a, b|c, 0) 

Fmm2 (No. 42) -25.350 Γସ
ି⊕Rଷ

ା (a, 0, 0|b, c) 
Ima2 (No. 46) -25.675 Γସ

ି⊕Rଷ
ା (a, a, 0|0, b) 

Imm2 (No. 44) -25.270 Γସ
ି⊕Rଷ

ା (a, a, b|0, c) 
Amm2 (No. 38) -33.795 Γସ

ି⊕Mଶ
ା (a, 0, 0|b; 0; 0) 

Cm (No. 8) -33.682 Γସ
ି⊕Mଶ

ା (a, b, 0|0; c; 0) 
P4bm (No. 100) -33.681 Γସ

ି⊕Mଶ
ା (a, 0, 0|0; 0; b) 

Pc (No. 7) -33.796 Γସ
ି⊕Mଶ

ା (a, a, b|c; 0; 0) 
Pmc21 (No. 26) -33.796 Γସ

ି⊕Mଶ
ା (a, a, 0|b; 0; 0) 

Cmmm (No. 65) -57.140 Mଶ
ା⊕Rଷ

ା (a; 0; 0|b, c) 
P42/mnm (No. 136) -33.759 Mଶ

ା⊕Rଷ
ା (a; 0; 0|b, 0) 

P4/mbm (No. 127) -57.325 Mଶ
ା⊕Rଷ

ା (a; 0; 0|0, b) 

 

Table S3. Possible low-energy structures of Ba3AsI3 derived from the prototype 

Pm-3m phase based on unstable phonon modes. The total energies are presented 

relative to the energy of the Pm-3m phase. 

Space group Total energy (meV/f.u.) irrep 

Fmmm (No. 69) -8.555 Rଷ
ା (a, b) 

I4/mcm (No. 140) -8.782 Rଷ
ା (0, a) 

I4/mmm (No. 139) -8.780 Rଷ
ା (a, 0) 

P4/mbm (No. 127) -13.675 Mଶ
ା (a; 0; 0) 

Cmmm (No. 65) -21.655 Mଶ
ା⊕Rଷ

ା (a; 0; 0|b, c) 
P42/mnm (No. 136) -13.652 Mଶ

ା⊕Rଷ
ା (a; 0; 0|b, 0) 

P4/mbm (No. 127) -21.662 Mଶ
ା⊕Rଷ

ା (a; 0; 0|0, b) 
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Figure S13. Calculated isosurfaces of wave functions in real space for (a) VBM 

and (b) CBM of Ba3BiBr3. 

 
 

 
Figure S14. Crystal orbital Hamilton population (COHP) analysis for (a) 

Ba3BiBr3, (b) Ca3NSb, and (c) CsPbI3. 

 
 

 

Figure S15. Orbital-projected electronic density of states (DOS) for (a) Ba3BiBr3, 

(b) Ca3NSb, and (c) CsPbI3, obtained using the HSE06+SOC method. The 

valence band maximum (VBM) is set to zero eV. 
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Figure S16. Electronic band structure and orbital-projected electronic density of 

states (DOS) for (a) tetragonal P4/mbm Ba3PI3, (b) tetragonal P4/mbm  

Ba3AsI3, and (c) orthorhombic Immm Ba3SbCl3, calculated using the 

HSE06+SOC method. The valence band maximum (VBM) is set to zero eV. 

 

 

Figure S17. The squares of the transition dipole matrix elements (P2) between 

the VBM and the CBM along different high-symmetry directions for the nine 

antiperovskite derivatives, calculated using the HSE06+SOC method. 
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Figure S18. The calculated joint density of states (JDOS) for the nine 

antiperovskite derivatives, obtained through the HSE06+SOC method. 

 
 

 
Figure S19. (a) Simulated XRD patterns of Ba3BiBr3, Ba3BiI3, and Ba3SbI3; (b) 

simulated STM image of Ba3BiBr3; and (c) simulated HRTEM image of Ba3BiBr3. 
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Table S4. Top 13 candidate materials predicted by XGBoost models with Ehull < 
80 meV/atom and 0.8 eV < Eg < 1.6 eV. 

Candidate Material Predicted Ehull (meV/atom) Predicted Eg (eV) 

Ba3(P0.5As0.5)Cl3 -19.44    1.58   

Ba3(P0.5As0.5)Br3 -10.26    1.41   

Ba3(P0.5As0.5)I3 -10.26    1.25    

Ba3(As0.5Bi0.5)Br3 2.84    1.08   

Ba3(As0.5Bi0.5)I3 2.84    0.84  

Sr3(As0.5Bi0.5)I3 5.29    1.43   

Ca3(As0.5Bi0.5)I3 9.87    1.53    

Ba3(As0.5Sb0.5)Br3 15.70    1.46   

Ba3(As0.5Sb0.5)I3 15.70    1.32   

Ba3(P0.5Bi0.5)Cl3 32.86    1.18    

Ba3(P0.5Sb0.5)Cl3 45.73    1.57    

Ba3(P0.5Bi0.5)Br3 47.09    0.94   

Ba3(P0.5Sb0.5)Br3 59.96    1.32   

Ba3(P0.5Sb0.5)I3 59.96    1.16    

 
 
 

 

 
Figure S20. (a) Calculated band structures obtained through the HSE06+SOC 

method for Ba3(P0.5As0.5)Cl3, and (b) phonon dispersion for Ba3(P0.5As0.5)Cl3. 
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Table S5. Materials parameters used to compute transport properties. C is the 

elastic tensor in Voigt notation (unit: GPa); εs and ε∞ are the static and high-

frequency dielectric constants in ε0; Dvb and Dcb are the absolute deformation 

potentials at the valence and conduction band edge, respectively; ωpo is the 

effective polar phonon frequency (unit: THz). 

Material C11 C44 C12 εs,11 εs,22 εs,33 ε∞,11 ε∞,22 ε∞,33 Dvb,11 Dvb,22 Dvb,33 Dcb,11 Dcb,22 Dcb,33 ωpo 

Ba3BiBr3 51.66 7.95 5.84 14.06 14.06 14.06 5.54 5.54 5.54 1.64 1.64 1.64 2.72 2.72 2.72 2.34 

Ba3BiI3 48.15 6.69 5.12 13.18 13.18 13.18 6.34 6.34 6.34 1.18 1.18 1.18 3.10 3.10 3.10 2.14 

Ba3SbI3 50.25 6.96 5.41 13.13 13.13 13.13 5.90 5.90 5.90 1.06 1.06 1.06 3.26 3.26 3.26 2.33 

 
 

Table S6. Primary features for machine learning. 

 Primary features Abbreviation 

1 Atomic number Z 

2 Atomic weight Ar 

3 Period number P 

4 Group number G 

5 Atomic radius ra 

6 Covalent radius rc 

7 Ionic radius ri 

8 Crystal radius rm 

9 Pauling electronegativity χP 

10 Allred-Rockow electronegativity χAR 

11 Mulliken electronegativity χM 

12 Martinov-Batsanov electronegativity χMB 

13 Gordy electronegativity χG 

14 Number of valence electrons Ne 

15 Density of element ρ 

 

Table S7. The optimized hyperparameters of XGBoost algorithm. 

Model Hyperparameter Value  

Eg 

n_estimators 461 

learning_rate 0.435 

max_depth 2 

min_child_weight 1 

Ehull 

n_estimators 456 

learning_rate 0.500 

max_depth 4 

min_child_weight 10 
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Figure S21. R2 scores from 5-fold cross-validation of the sequential forward 

selection (SFS) results for the XGBoost model of (a) Ehull and (c) Eg. Loss 

function of the XGBoost model for (b) Ehull and (d) Eg across each epoch on the 

training and test datasets. 
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