Supporting Information

Designing photocatalytic and self-renewed g-C₃N₄ nanosheets/ poly-Schiff base composite coating towards long-term biofouling

resistance

Saijun Wu,^{a,b} Minglong Yan,^{a,*} Yinghao Wu,^a Yangmin Wu,^a Xijian Lan,^a Jianjun Cheng,^a Wenjie Zhao^{a,*}

^a Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo

^b University of Chinese Academy of Sciences, Beijing, 100049, China

E-mail: <u>yanminglongivip@163.com</u> (M. Yan); <u>zhaowj@nimte.ac.cn</u> (W. Zhao)

Fig. S1. Dispersed g-C-NS in IPA sit for more than five months.

Fig. S2. C 1s XPS spectra for g-C, g-C-T, g-C-NS and g-C-NS-L.

Fig. S3. FT-IR spectra of coatings before and after degradation.

Fig. S4. EPR spectrum on visible light (λ >420nm) g-C, g-C-T and g-C-NS system captured by DMPO before and after irradiation: (A)-(C) signals captured in methanol solution; (D)-(F) signals captured in deionized water.

Fig. S5. Equivalent circuit diagram.

Fig. S6. Surface morphology of the coatings after immersion in deionized water for 5 days in the dark.

Fig. S7. Cross-sectional morphology of freshly prepared coatings.

Fig. S8. Absorption spectra of TPA. (A) UV-Vis spectra of TPA solutions of different concentrations. (B) A linear fit of the maximum value of solution absorbance to the concentration of the solution.

A series of TPA solutions of different concentrations were configured and the absorbance at the maximum absorption wavelength was recorded. The Lambert-Beer law relates absorbance to solution thickness and solute concentration: $A = lg^{[0]}(I_0/I) = abc$

Where I_0 is the intensity of incident monochromatic light, I is the intensity of transmitted light, a is the absorption coefficient. The absorbance A in dilute solution is proportional to the thickness b of liquid layer and the concentration c of solute. The corresponding calibration curve was done, the resulting equation was as follows: [TPA] (µg/ml) = Absorbance/0.16679 (R² = 0.99982).

Fig. S9. Absorption spectra of coatings degradation solution in light/dark conditions at 293.15 K.

Fig. S10. SEM images of surface/cross-section of coatings after immersion in PBS solution for 12 h in visible light.

Fig. S11. (A) Concentration of surviving bacteria in photocatalyst suspensions. (B) Bacteriostasis rate of g-C, g-C-T and g-C-NS.

Fig. S12. Number of bacteria on the surface of glass and coatings after immersion in PBS solution for 12 h in visible light.

Fig. S13. Zeta potentials of g-C and g-C-NS in deionized water.

Samulas	E	Elements Content (at%)			
Samples	С	Ν	О		
g-C	47.291	51.359	1.35		
g-C-T	47.619	50.938	1.443		
g-C-NS	48.744	50.186	1.069		
g-C-NS-L	47.440	50.486	2.075		

Table S1. Summarized XPS data for g-C, g-C-T, g-C-NS and g-C-NS-L.

C 1s	(N-) ₂ C=N		C-N		C-C	
	area	a%	area	b%	area	c%
g-C	12155.3	83.656	267.1	1.837	2109.8	
g-C-T	11611.1	87.043	253.0	1.895	14.507	
g-C-NS	6576.1	83.306	149.0	1.886	1476.8	11.061
g-C-NS-L	9739.1	83.898	255.0	2.196	1170.0	14.808
					1615.8	13.907

 $C-N=C(sp^2)$ $N-(C)_3(sp^2)$ $C-NH_x$ N 1s c% a% b% area area area 18832.4 64.468 8378.8 28.6941995.9 6.838 g-C g-C-T 18289.7 65.055 8775.7 31.23 1043.5 3.715 g-C-NS 55.610 6283.6 40.104 671.2 8716.1 4.286 g-C-NS-L 14743.4 62.028 8106.5 34.118 915.3 3.854

 Table S2. Charge transfer resistance for photocatalysts.

Samples	R _{ct} (ohm)		
g-C	219		
g-C-T	153.5		
g-C-NS	123.6		

Commission	Elements content (at%)						
Samples	С		Ν		Ο		
DPC	84.8		8.31		6.9		
DPC (D)	77	.7	9.2		13.1		
DPC-0.2	87.	88	8.21		3.9		
DPC-0.2 (D)	80.	80.42 10.77			8.81		
C 1	C-C		C=C	C=C		C=O	
C Is	area	a%	area	b%	area	c%	
DPC	13315.4	65	6392.2	31.2	778.7	3.8	
DPC (D)	8925.9	60.2	4379	29.5	1530.3	10.3	
DPC-0.2	16293.6	77.8	4062.6	19.4	596.9	2.8	
DPC-0.2 (D)	9664.3	60.2	4684.7	29.2	1690.8	10.6	
N 1s	C=N		N-C		NH ₂		
	area	a%	area	b%	area	c%	
DPC	1829.6	62.4	1153.5	27.3	297.6	10.3	
DPC (D)	924.3	34.9	1402	52.9	323.2	12.2	
DPC-0.2	2278.8	81.7	423.3	15.2	86	3.1	
DPC-0.2 (D)	1680.1	47	1558.5	43.6	337.1	9.4	

Table S3. Summarized XPS data for coatings before/after degradation (DPC, DPC-
0.2/DPC (D), DPC-0.2 (D)).

Table S4. Pseudo-first-order reaction linear fittings for coating degradation in the light/dark conditions.

Linear fittings	y = a + k x (Light)					
	DPC-0.3	DPC-0.2	DPC-0.1	DPC-g-C0.2	DPC	
Intercept (a)	-0.00399 \pm	-0.00406 \pm	-0.00347 \pm	-0.00158 \pm	$1.90342\text{E-}4 \pm$	
	7.9414E-4	6.95056E-4	6.28587E-4	4.45604E-4	2.87661E-5	
Slope (k)	$0.00214 \pm$	$0.00181 \pm$	$0.00113 \ \pm$	$4.41919E4\pm$	$4.0631\text{E-5} \pm$	
	4.63459E-5	4.05633E-5	3.66842E-5	2.60053E-5	1.67878E-6	
Correlation	0.99626	0.99599	0.99169	0.9734	0.98662	
RSqCOD	0.99253	0.992	0.98345	0.9475	0.97341	
AdjRSq	0.99207	0.9915	0.98241	0.94422	0.97175	

Linear fittings	y = b + k * x (Dark)					
	DPC-0.3	DPC-0.2	DPC-0.1	DPC-g-C0.2	DPC	
Intercept (b)	$6.1592\text{E-}5\pm$	$3.31421\text{E-5} \pm$	$3.1399\text{E-5} \pm$	$2.5753\text{E-4} \pm$	$9.59764\text{E-}5\pm$	
	8.07839E-5	1.91641E-5	1.60513E-5	4.15773E-5	1.35215E-5	
Slope (k)	$1.38564\text{E-}4\pm$	$6.80653\text{E-}5\pm$	$6.77365\text{E-}5\pm$	$5.40602\text{E-}5\pm$	$4.60361\text{E-5} \pm$	
	4.71453E-6	1.11842E-6	9.36751E-7	2.55521E-6	7.89111E-7	
Correlation	0.99087	0.99785	0.99847	0.98365	0.99766	
RSqCOD	0.98181	0.9957	0.99695	0.96758	0.99532	
AdjRSq	0.98068	0.99543	0.99676	0.96541	0.99503	