## **Supplementary Information for**

# Highly oriented BN-based TIMs with high through-plane thermal

# conductivity and low compression modulus

Rongjie Yang <sup>a, b</sup>, Yandong Wang <sup>a</sup>, Zhenbang Zhang <sup>a</sup>, Kang Xu <sup>a</sup>, Linhong Li <sup>a, b</sup>, Yong Cao <sup>c</sup>, Maohua Li <sup>a</sup>, Jianxiang Zhang <sup>a</sup>, Yue Qin <sup>a</sup>, Boda Zhu <sup>a, b</sup>, Yingying Guo <sup>a</sup>, Yiwei Zhou <sup>a</sup>, Tao Cai <sup>a</sup>, Cheng-Te Lin <sup>a, b</sup>, Kazuhito Nishimura <sup>a</sup>, Chen Xue <sup>a, \*</sup>, Nan Jiang <sup>a, b</sup>, Jinhong Yu <sup>a, b, \*</sup>

<sup>a.</sup> Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials

Technology and Engineering, Chinese Academy of Sciences, Ningbo

<sup>b.</sup> Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

<sup>c.</sup> State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

#### а b 40 Mean=42.75 µm 30 Count (n) 10 Ω 15 30 45 60 75 Diameter (µm) С d Transmittance (a.u.) (002) Intensity (a.u.) 813 1373 (100)2500 2000 1500 1000 500 20 30 60 40 50 Wavenumber (cm<sup>-1</sup>) 2 Theta (°)

90

70

### **Supplementary Figures**

Fig. S1 (a) SEM image of h-BN (PT110). (b)Size distribution of h-BN (PT110). (c) FTIR spectra of h-BN (PT110). (d) XRD pattern of h-BN (PT110).



Fig. S2 (a) The process of horizontal orientation. (b) BN/PDMS film after cutting. (c) Stacked BN/PDMS film. (d) Densified BN/PDMS block.



Fig. S3 (a) SEM images of BN/PDMS film with varying thicknesses (0.3, 0.4, 0.55 and 0.75 mm)  $\,$ 



Fig. S4 (a) The original Micro-CT images of Pad-75-V. (b) Screenshot of XZ plane. (c) Screenshot of YZ plane.



Fig. S5 (a) The azimuthal angel ( $\phi$ ) plots of Pad-75-V. (b) The azimuthal angel ( $\phi$ ) plots of Pad-75-R.



Fig. S6 The corresponding grid divisions of ANSYS models.



Fig. S7 Schematic diagram of compression direction.



Fig. S8 (a), (b) The optical images of customized molds. (c), (d) Filling ability of Pad-75-V.



Fig. S8 (a) Device of TIM performance test in graphics card (GTX 1060ti).(b) The running page of the OCCT software.

| Materials      | Method           | Loading    | Through-plane TC                     | References |
|----------------|------------------|------------|--------------------------------------|------------|
|                |                  |            | (W m <sup>-1</sup> K <sup>-1</sup> ) |            |
| BN/epoxy       | Blending         | 10 wt%     | 0.57                                 | 1          |
| BN/epoxy       | Blending         | 20 wt%     | 0.64                                 | 2          |
| BN/epoxy       | Blending         | 30 wt%     | 1.17                                 | 3          |
| BN/PI          | Blending         | 40 wt%     | 0.74                                 | 4          |
| BNNS/PI        | Blending         | 40 wt%     | 0.67                                 | 5          |
| BN/epoxy       | Magnetic field   | 50 wt%     | 3.59                                 | 6          |
| <b>BN/PDMS</b> | Micro-fluidic    | 9.85 vol%  | 6.40                                 | 7          |
| BNNS/PDMS      | Wet-spinning     | 27.05 vol% | 5.13                                 | 8          |
| BN/MVQ         | Stacking-cutting | 54 vol%    | 6.34                                 | 9          |
| <b>BN/PVDF</b> | Pressing-cutting | 30 wt %    | 3.5                                  | 10         |
| BN/SR          | Rolling-cutting  | 60 wt%     | 7.62                                 | 11         |
| BN/SG          | Micro-fluidic    | 60 wt%     | 5.65                                 | 12         |
| <b>BN/PDMS</b> | Rolling-cutting  | 60 wt%     | 6.59                                 | This work  |
| <b>BN/PDMS</b> | Rolling-cutting  | 65 wt%     | 7.77                                 | This work  |
| <b>BN/PDMS</b> | Rolling-cutting  | 70 wt%     | 9.22                                 | This work  |
| BN/PDMS        | Rolling-cutting  | 75 wt%     | 12.11                                | This work  |

Table S1 Through-plane thermal conductivity of BN/BNNS based composites

Table S2 Measured density, thermal diffusivity, and heat capacity of BN/PDMS composites with various BN contents with vertically aligned structure at room temperature.

| Samples  | Density               | Thermal diffusivity | Heat capacity                         |
|----------|-----------------------|---------------------|---------------------------------------|
|          | (g cm <sup>-3</sup> ) | $(mm^2 s^{-1})$     | (J kg <sup>-1</sup> K <sup>-1</sup> ) |
| Pad-60-V | 1.49                  | 3.88                | 1.14                                  |
| Pad-65-V | 1.57                  | 4.67                | 1.06                                  |
| Pad-70-V | 1.65                  | 5.48                | 1.02                                  |
| Pad-75-V | 1.70                  | 7.20                | 0.99                                  |

 Table S3 Compression modulus of reported BN/BNNS composites.

| Materials      | Through-plane TC                     | <b>Compression modulus</b> | References |
|----------------|--------------------------------------|----------------------------|------------|
|                | (W m <sup>-1</sup> K <sup>-1</sup> ) | (kpa)                      |            |
| BN/PU          | 11.5                                 | 150                        | 13         |
| LM-BN/PDMS     | 4.3                                  | 193                        | 14         |
| GNP-BN/PDMS    | 1.16                                 | 1470                       | 15         |
| <b>BN/PDMS</b> | 6.4                                  | 2200                       | 7          |
| <b>BN/PDMS</b> | 5.65                                 | 2350                       | 12         |
| BNNS/Epoxy     | 6.07                                 | 4000                       | 16         |
| <b>BN/PDMS</b> | 12.11                                | 55                         | This work  |

### References

- 1. D. Lee, S. Lee, S. Byun, K.-W. Paik and S. H. Song, Compos. Pt. A-Appl. Sci. Manuf., 2018, 107, 217-223.
- 2. M. Donnay, S. Tzavalas and E. Logakis, Compos. Sci. Technol., 2015, **110**, 152-158.
- 3. J. Hou, G. Li, N. Yang, L. Qin, M. E. Grami, Q. Zhang, N. Wang and X. Qu, RSC Adv., 2014, 4, 44282-44290.
- 4. N. Yang, C. Xu, J. Hou, Y. Yao, Q. Zhang, M. E. Grami, L. He, N. Wang and X. Qu, RSC Adv., 2016, **6**, 18279-18287.
- 5. S. Zuo, Y. Lan, J. Luo, F. Zhou, L. Xu, S. Xie, X. Wei, L. Zhou, L. Ma, X. Li and C. Yin, ACS Omega, 2022, **7**, 43273-43282.
- 6. S. Xu, H. Liu, Q. Li, Q. Mu and H. Wen, J. Mater. Chem. C, 2016, 4, 872-878.
- 7. K. Yang, X. Yang, Z. Liu, K. Li, Y. Yue, R. Zhang, F. Wang, X. Shi, J. Yuan, N. Liu, G. Wang, Z. Wang and G. Xin, ACS Appl. Mater. Interfaces, 2023, **15**, 28536-28545.
- 8. C. Lei, Y. Zhang, D. Liu, X. Xu, K. Wu and Q. Fu, Compos. Sci. Technol., 2021, **214**, 108995.
- 9. Z. Yin, J. Guo and X. Jiang, Compos. Sci. Technol., 2021, **209**, 108794.
- 10. Q. Song, W. Zhu, Y. Deng, F. Hai, Y. Wang and Z. Guo, Compos. Pt. A-Appl. Sci. Manuf., 2019, **127**, 105654.
- 11. Q. Hu, X. Bai, C. Zhang, X. Zeng, Z. Huang, J. Li, J. Li and Y. Zhang, Compos. Pt. A-Appl. Sci. Manuf., 2022, **152**, 106681.
- 12. H. Niu, H. Guo, L. Kang, L. Ren, R. Lv and S. Bai, Nano-Micro Lett., 2022, 14, 153.
- 13. N. Zhao, J. Li, W. Wang, W. Gao and H. Bai, ACS Nano, 2022, **16**, 18959-18967.
- 14. J. Wang, S. Wang, X. Cheng, R. Lv, Y. Luo, S. Wang, X. Liu, B. Zhou, R. Sun, Y. Liu, X. Zeng and Z. Yu, Compos. Commun., 2024, **47**, 101881.
- 15. J. Zhang, H. Wang, T. Zhang, X. Sun, Y. Meng, C. Ma, T. Zhang, N. Lu, C. Liu and Y. Zeng, Compos. Sci. Technol., 2023, **233**, 109915.
- 16. J. Han, G. Du, W. Gao and H. Bai, Adv. Funct. Mater., 2019, **29**, 1900412.