Supporting information

A PEDOT based graft copolymer with enhanced electronic stability

Modi Gu,^a Lorenzo Travaglini,^a Daniel Ta,^b Jonathan Hopkins,^a Antonio Lauto, ^b Pawel Wagner, ^c Klaudia Wagner, ^c David L. Officer, ^c Damia Mawad^{a, d}*

^a School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia. E-mail: damia.mawad@unsw.edu.au

^b School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

^c Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, New South Wales 2522, Australia

^d Australian Centre for NanoMedicine, UNSW Sydney, Sydney, New South Wales 2052, Australia

Substrate	Sample name	Thickness (µm)
ΙΤΟ	Poly(EDOTS-g-EDOT) (<i>d</i> _{graft-copolymer})	1.093 ± 0.209
	PEDOTS (<i>d</i> _{PEDOTS})	1.064 ± 0.204
	Grafted PEDOT layer ($d_{\text{grafted-PEDOT-layer}}$)	0.029 ± 0.008
OECT devices	Poly(EDOTS-g-EDOT)	1.082 ± 0.263
	SC-PEDOT:PSS	1.794 ± 0.171
	EP-PEDOT:PSS	9.374 ± 0.347

Table S1. Thickness (*d*) of polymeric films synthesised on ITO and OECT single channel devices.

Table S2. Poly(EDOTS-g-EDOT), EP-PEDOT:PSS, and SC-PEDOT:PSS XPS fitting parameters for S $2p_{3/2}$.^{1–3}

Commencente	Poly(EDOTS-g-EDOT)		
Components	FWHM	Binding energy (eV)	Ratio (%)
Sulfur in thiophene ring	0.9	163.8	37
Oxidized sulfur in thiophene ring	1.2	165.3	16
Sulfur from sulfone group	1.2	168.0	2
Sulfur from sulfonate group	1.2	168.4	45
Commonweater	EP-PEDOT:PSS		
Components	FWHM	Binding energy (eV)	Ratio (%)
Sulfur in thiophene ring	0.9	162.4	9
Oxidized sulfur in thiophene ring	1.2	164.1	4
Sulfur from sulfone group	-	-	-
Sulfur from sulfonate group	1.2	166.7	87
Commonweater	SC-PEDOT:PSS		
Components	FWHM	Binding energy (eV)	Ratio (%)
Sulfur in thiophene ring	1.0	164.0	19
Oxidized sulfur in thiophene ring	1.2	165.3	8
Sulfur from sulfone group	-	-	-
Sulfur from sulfonate group	1.2	168.1	73

Figure S1: CV curves of electropolymerization of P(EDOTS-*g*-EDOT): A) repeats of 3 samples synthesised on IDME devices, and B) repeats of 3 samples synthesised on ITO substrates. The voltammograms were recorded by applying 2 cycles from -0.4 V to +1.1 V with a scan rate of 10 mV.s⁻¹ to electrodeposit PEDOTS (labelled as cycle 1 and cycle 2 in the legend), followed by one cycle from -0.4 V to +1.1 V with a scan rate of 100 mV.s⁻¹ to electrodeposit PEDOTS (labelled as cycle 1 and cycle 2 in the legend), followed by one cycle from -0.4 V to +1.1 V with a scan rate of 100 mV.s⁻¹ to electrodeposit PEDOT (labelled as cycle 3 in the legend).

Cycles 11-15

Figure S2. Laser confocal microscopy images taken after cycles 2, 4, 10, 15, and 20 to assess the extent of PEDOT:PSS coverage by electropolymerization on the IDME surface.

Figure S3. XPS analysis of S 2p spectra of A) SC-PEDOT:PSS and C) EP-PEDOT:PSS. Contact angle measurements of B) SC-PEDOT:PSS and PEDOTS that had no grafted PEDOT on its surface, and D) EP-PEDOT:PSS films.

Figure S4. A) Cyclic voltammetry of poly(EDOTS-*g*-EDOT) (red line), EP-PEDOT:PSS (blue line) and SC-PEDOT:PSS (black line) electropolymerized and measured at a scan rate of 50 mV.s⁻¹ in aqueous electrolyte vs. Ag/AgCl for 6 cycles. Bode, phase angle and capacitance plots of B) SC-PEDOT:PSS and C) EP-PEDOT:PSS under an applied voltage of +0.4 V in aqueous electrolyte vs. Ag/AgCl with a frequency range from 100 mHz to 100 kHz.

Figure S5. Output curves of A) poly(EDOTS-*g*-EDOT) (red line), and B) SC-PEDOT:PSS (black line) under gate voltage $V_{\rm G}$ shift from +1.0 V to -0.6 V with a voltage step of 0.2 V. The gate electrode is an Ag/AgCl reference electrode, and the electrolyte is 0.1 M NaCl aqueous solution.

Figure S6. Threshold voltage extraction of A) poly(EDOT-*g*-EDOT) and B) SC-PEDOT:PSS. Three repeat devices are shown for each polymeric film.

Figure S7: 'Intermittent' ON/OFF stability of poly(EDOTS-*g*-EDOT) OECT devices left soaking in the electrolyte and measured at day 0, 1, 3, 7 and 14. $I_{D,max}$ is the maximum drain current at -0.4 V determined for every 5th ON/OFF cycle. $I_{D,0}$ is the maximum drain current determined for the 1st ON/OFF cycle measured at day 0.

References:

- 1 H. Yoon, J. Y. Hong and J. Jang, *Small*, 2007, **3**, 1774–1783.
- S. Marciniak, X. Crispin, K. Uvdal, M. Trzcinski, J. Birgerson, L. Groenendaal, F.
 Louwet and W. R. Salaneck, *Synth Met*, 2004, 141, 67–73.
- B. J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling and K. Siegbahn, *Phys Scr*, 1970, **1**, 286–298.