Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2024

Supplementary Information Rethinking tolerance factor analysis for chalcogenide perovskites

Jonathan W. Turnley, Shubhanshu Agarwal, and Rakesh Agrawal*

Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States

* Rakesh Agrawal – Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States Email: agrawalr@purdue.edu

Material	Crystal	B-	Material	Crystal	B-	Material	Crystal	B-
	Structure	cation		Structure	cation		Structure	cation
	Туре	CN		Туре	CN		Туре	CN
AgPS ₃	Other	4	EuPS₃	Other	3	PrBS ₃	Other	3
AgTaS ₃	Other	8	EuZrS₃	DP (2-4)	6	PrErS ₃	CeTmS₃	6,7
BaGeS₃	Other	4	GdScS ₃	DP (3-3)	6	PrLuS ₃	NdYbS ₃	6
BaHfS₃	DP (2-4)	6	GeTiS₃	NL	6	PrScS ₃	DP (3-3)	6
BaNbS ₃	Hex	6	HgPS₃	Other	3	PrTmS ₃	CeTmS₃	6,7
BaPS ₃	Other	3	InAlS ₃	Hex	4	SbCrS ₃	NL	6
BaSnS₃	NL	6	InGaS₃	Hex	4	RbPS ₃	Other	4
BaTaS₃	Hex	6	InSbS₃	NL	6	SmBS ₃	Other	3
BaTeS₃	Other	3	KPS₃	Other	4	SmBiS₃	Other	7
BaTiS₃	Hex	6	LaCrS₃	NL	6	SmCrS ₃	NL	6
BaUS₃	DP (2-4)	6	LaErS ₃	Other	6,7	SmGdS₃	Other	7
BaVS₃	Other	5	LaGaS₃	Other	4	SmScS ₃	DP (3-3)	6
BaZrS ₃	DP (2-4)	6	LaHoS ₃	CeTmS ₃	6,7	SnGeS ₃	Other	4
BiInS₃	Other	6	LaLuS₃	DP (3-3)	6	SnHfS₃	NL	6
BiSbS₃	Other	6	LaScS₃	DP (3-3)	6	SnPS₃	Other	3
CaHfS ₃	DP (2-4)	6	LaTmS₃	CeTmS ₃	6,7	SnZrS ₃	NL	6
CaPS ₃	Other	3	LaTiS₃	NL	6	SrHfS₃	DP (2-4)	6
CaZrS ₃	DP (2-4)	6	LaVS₃	NL	6	SrPS ₃	Other	3
CdPS ₃	Other	3	LaYS ₃	CeTmS ₃	6,7	SrSnS ₃	NL	6
CeBS ₃	Other	3	MgPS₃	Other	3	SrZrS ₃	DP (2-4)	6
CeCrS ₃	NL	6	MnPS₃	Other	3	TbBS ₃	Other	3
CeDyS ₃	Other	7	MoTiS₃	Other	6	TbScS₃	DP (3-3)	6
CeErS ₃	Other	6,7	NiPS₃	Other	3	ThCrS ₃	DP (4-2)	6
CeLuS ₃	NdYbS ₃	6	NdBS ₃	Other	3	TIPS ₃	Other	4
CeScS ₃	DP (3-3)	6	NdCrS ₃	NL	6	TlTaS₃	NL	6
CeTmS₃	CeTmS ₃	6,7	NdLuS ₃	NdYbS ₃	6	UCrS₃	DP (4-2)	6
CeYbS ₃	NdYbS ₃	6	NdScS ₃	DP (3-3)	6	UNiS ₃	DP (4-2)	6
CsPS ₃	Other	4	NdTmS ₃	Other	6,7	URhS₃	DP (3-3)	6
CsTaS ₃	Hex	6	PbGeS ₃	Other	4	UScS ₃	Other	6
CuPS ₃	Other	4	PbHfS₃	NL	6	UVS ₃	DP (3-3)	6
CuTaS₃	Other	6	PbPS ₃	Other	3	YScS ₃	DP (3-3)	6
DyScS ₃	DP (3-3)	6	PbSnS ₃	NL	6	ZnPS ₃	Other	3
EuGeS ₃	Other	4	PbZrS ₃	NL	6			
EuHfS₃	DP (2-4)	6	PdGeS₃	Other	4			

Table S1. List of ABS_3 materials obtained from the Materials Project¹

lon	Charge	CN	r ^s (Å)	Data	lon	Charge	CN	r ^s (Å)	Data
				Туре					Туре
Ag	+1	12	1.28	е	Ni	+2	12	1.17	е
Al	+3	6	0.69	m	Ni	+2	6	0.69	е
В	+3	6	0.5	е	Р	+5	6	0.49	а
Ва	+2	12	1.73	m	Р	+4	6	0.479	а
Bi	+3	12	1.63	е	Pb	+2	12	1.717	а
Bi	+3	6	1.15	m	Pd	+2	12	1.22	а
Са	+2	12	1.56	е	Pr	+3	12	1.56	е
Cd	+2	12	1.56	е	Rb	+1	12	1.78	е
Ce	+3	12	1.602	а	Rh	+3	6	0.665	m
Cr	+3	6	0.705	m	Sb	+3	12	1.529	а
Cr	+2	6	0.9	m	Sb	+3	6	1.061	а
Cs	+1	12	2.135	а	Sc	+3	6	0.87	m
Cu	+2	12	1.34	е	Sm	+2	12	1.64	а
Dy	+3	12	1.45	е	Sm	+3	12	1.5	е
Dy	+3	6	1.03	е	Sn	+2	12	1.607	а
Er	+3	6	1.04	а	Sn	+4	6	0.86	m
Eu	+2	12	1.64	е	Sr	+2	12	1.68	е
Eu	+3	12	1.53	е	Та	+5	6	0.75	m
Ga	+3	6	0.74	m	Та	+4	6	0.79	m
Gd	+3	12	1.52	е	Tb	+3	12	1.51	е
Gd	+3	6	1.04	е	Те	+4	6	0.906	а
Ge	+2	12	1.4	а	Th	+4	12	1.49	е
Ge	+4	6	0.616	а	Ti	+4	6	0.73	m
Hf	+4	6	0.85	m	Ti	+3	6	0.75	m
Hg	+2	12	1.435	а	TI	+1	12	2.17	е
Но	+3	6	1.04	а	Tm	+3	6	1	а
In	+3	12	1.34	е	U	+3	12	1.53	е
In	+3	6	0.92	m	U	+4	12	1.45	e
К	+1	12	1.85	е	U	+4	6	0.99	m
La	+3	12	1.5	е	V	+4	6	0.66	m
Lu	+3	6	0.99	m	V	+3	6	0.72	m
Mg	+2	12	1.44	е	Y	+3	12	1.46	е
Mn	+2	12	1.485	е	Y	+3	6	1.01	m
Мо	+3	12	1.228	а	Yb	+3	6	1.02	m
Na	+1	12	1.51	е	Zn	+2	12	1.21	е
Nb	+4	6	0.77	m	Zr	+4	6	0.85	m
Nd	+3	12	1.587	а					

Table S2. Crystal radii determined from metal sulfides²

CN – Coordination Number; r^s – radius from sulfide data, m – measured data; e – extrapolated data; a – approximated data (data types explained below)

lon	Charge	First	First	Second	Second	Extrapolate	Extrapolated
		CN	r ^s (Å)	CN	r ^s (Å)	CN	r ^s (Å)
Ag	+1	4	0.92	6	1.01	12	1.28
В	+3	3	0.11	4	0.24	6	0.5
Bi	+3	5	1.07	6	1.15	12	1.63
Ca	+2	7	1.21	8	1.28	12	1.56
Cd	+2	5	0.93	6	1.02	12	1.56
Cu	+2	4	0.62	5	0.71	12	1.34
Dy	+3	7	1.1	8	1.17	12	1.45
Dy	+3	7	1.1	8	1.17	6	1.03
Eu	+2	6	1.28	8	1.4	12	1.64
Eu	+3	7	1.13	8	1.21	12	1.53
Gd	+3	7	1.12	8	1.2	12	1.52
Gd	+3	7	1.12	8	1.2	6	1.04
In	+3	5	0.85	6	0.92	12	1.34
К	+1	7	1.6	8	1.65	12	1.85
La	+3	8	1.3	9	1.35	12	1.5
Mg	+2	4	0.72	6	0.9	12	1.44
Mn	+2	4	0.725	6	0.915	12	1.485
Na	+1	5	1.16	6	1.21	12	1.51
Ni	+2	4	0.53	5	0.61	12	1.17
Ni	+2	4	0.53	5	0.61	6	0.69
Pr	+3	6	1.14	8	1.28	12	1.56
Rb	+1	7	1.73	8	1.74	12	1.78
Sm	+3	8	1.22	9	1.29	12	1.5
Sr	+2	6	1.32	8	1.44	12	1.68
Tb	+3	7	1.11	8	1.19	12	1.51
Th	+4	8	1.17	9	1.25	12	1.49
TI	+1	6	1.45	8	1.69	12	2.17
U	+3	7	1.13	8	1.21	12	1.53
U	+4	7	1.05	8	1.13	12	1.45
Y	+3	6	1.01	8	1.16	12	1.46
Zn	+2	5	0.72	6	0.79	12	1.21

Table S3. Data used for extrapolated crystal radii²

Discussion S1. Limitations of the sulfide-derived radii dataset

While the sulfide derived dataset used in this work do lead to improved predictive ability compared to the use of oxide derived data, there are still some notable limitations. Much of this data comes from Shannon's work on sulfide crystal radii.² The data from Shannon is based on experimental data of the crystal structures of metal sulfides (defined as measured data, m, in Table S1). Unfortunately, this work was not as extensive as Shannon's original works using oxide and fluoride data.^{3,4} To fill in the gaps, linear extrapolation on other datapoints from Shannon's work was used where possible (defined as extrapolated data, e, in Table S2). Linear extrapolation has been used in recent work related to tolerance factor analysis and was applied here for simplicity.⁵ However, more accurate extrapolation may be obtained using more complex, non-linear methods.⁶ When linear extrapolation was not possible, the values were approximated based on bond distances of metal sulfides listed in the Materials Project database (defined as approximated data, a, in Table S1).¹ The average bond distance was used from a representative material listed above with the correct charge and coordination number. The exception to this is for Sm²⁺, which has the same radius as Eu²⁺ when both have a coordination number of 6, so it was assumed that it also has the same radius as Eu²⁺ when both have a coordination number of 12. However, improvements and expansion of this dataset could be done with a new and in-depth analysis of sulfide material crystallographic data.

A second limitation of this dataset (and the datasets from Shannon in general) is the assumption of a constant anionic radius. Because crystallographic data only reveals bond lengths, Shannon needed to know the radius of one of the constituent ions in order to calculate the radius of the other ion. This lead to the assumption of a constant radius for the oxide anion and later to the assumption of a constant crystal radius of the sulfide anion.^{2–4} But similar to how the cationic radii can vary depending on the ionic-covalent nature of the specific bond, it seems reasonable to assume that the anionic radii could also vary based on the bond nature. Therefore, more investigation is needed into how the radii of the anions is changing depending on the constituent cations.

Table S4. Comparison of computed crystal structures from Materials Project¹ and experimental crystal structures listed in ICSD for the 67 materials calculated to have octahedral structures.⁷

Material	Crystal	Crystal Structure	Material	Crystal	Crystal Structure
	, Structure	(ICSD) ⁷		Structure	(ICSD) ⁷
	(Materials			(Materials	
	Project) ¹			Project) ¹	
AgTaS ₃	Other	Other	LaTmS₃	CeTmS ₃	CeTmS ₃ and Other
BaHfS₃	DP	DP	LaTiS ₃	NL	Not Available
BaNbS ₃	Hex	Hex	LaVS ₃	CeTmS₃	Not Available
BaSnS₃	NL	NL	LaYS ₃	CeTmS₃	CeTmS₃
BaTaS₃	Hex	Hex	MoTiS ₃	Other	Other
BaTeS ₃	Other	Other	NdCrS ₃	NL	NL
BaTiS₃	Hex	Hex	NdLuS₃	NdYS₃	NdYS ₃
BaUS ₃	DP	DP	NdScS ₃	DP	DP
BaZrS₃	DP	DP	NdTmS ₃	CeTmS₃	CeTmS₃
BilnS ₃	Other	Other	PbHfS ₃	NL	NL
BiSbS ₃	Other	Other	PbSnS ₃	NL	NL
CaHfS₃	DP	DP	PbZrS ₃	NL	NL
CaZrS ₃	DP	DP	PrErS ₃	CeTmS₃	CeTmS ₃
CeCrS₃	NL	NL	PrLuS₃	NdYS₃	NdYS ₃
CeDyS ₃	Other	Other and CeTmS ₃	PrScS₃	DP	DP
CeErS₃	Other	Other and CeTmS ₃	PrTmS₃	CeTmS₃	CeTmS₃
CeLuS ₃	NdYbS₃	NdYbS ₃	SbCrS ₃	NL	NL
CeScS ₃	DP	DP	SmBiS ₃	Other	Other
CeTmS ₃	CeTmS₃	CeTmS ₃ and Other	SmCrS₃	NL	NL
CeYbS ₃	NdYbS₃	NdYbS ₃ and Other	SmGdS ₃	Other	Other
CsTaS ₃	Hex	Hex	SmScS ₃	DP	DP
CuTaS ₃	Other	Other	SnHfS₃	NL	NL
DyScS ₃	DP	DP	SnZrS₃	NL	NL
EuHfS₃	DP	DP	SrHfS₃	DP	DP
EuZrS ₃	DP	DP and NL	SrSnS ₃	NL	NL
GdScS ₃	DP	DP	SrZrS ₃	DP	DP and NL
GeTiS₃	NL	NL	TbScS ₃	DP	DP
InGaS₃	Other	Other	ThCrS₃	DP	DP
InSbS₃	NL	NL	TlTaS₃	NL	NL
LaCrS₃	NL	NL	UCrS₃	DP	DP
LaGaS₃	Other	Other	UScS ₃	Other	Other
LaHoS ₃	CeTmS ₃	CeTmS ₃	UVS ₃	DP	DP
LaLuS₃	DP	DP	YScS ₃	DP	DP
LaScS₃	DP	DP			

Work Cited

- 1 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, *APL Mater.*, 2013, **1**, 11002.
- 2 R. D. Shannon, in *Industrial Chemistry Library*, Academic Press Inc., 1981, vol. 2, pp. 53– 70.
- 3 R. D. Shannon and C. T. Prewitt, *Acta Cryst.*, 1969, **B25**, 925.
- 4 R. D. Shannon, *Acta Crystallogr. Sect. A*, 1976, **32**, 751–767.
- 5 A. Jess, R. Yang and C. J. Hages, *Chem. Mater.*, 2022, **34**, 6894–6901.
- 6 W. H. Zachariasen, J. Less Common Met., 1978, **62**, 1–7.
- 7 NIST Inorganic Crystal Structure Database, https://doi.org/10.18434/M32147.