Supplementary materials

Well-Balanced Performance Achieved in PZT Piezoceramics via a

Multiscale Regulation Strategy

Wei Xiao ^{a, b}, Zhengran Chen ^{a, *}, Xiaowei Liu ^{c, d}, Zhiyong Zhou ^{a, b}, Zhengqian Fu ^c, Yizheng Tang ^e, Ruihong Liang ^{a, b, *}

- ^a Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 588 Heshuo Road, Jiading District, Shanghai 201800, China
- ^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijinshan District, Beijing 100049, China
- ^c State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- ^d School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
- ^e Hangzhou Applied Acoustics Research Institute, Hangzhou 310023, China

The various electromechanical properties for $Po_{1-x}Ba_xSNZ$ 1-Min ceranics.						
x (mol%)	d ₃₃ (pC/N)	Qm	k p	tanð	3	T_{c} (°C)
0.00	423	582	0.64	0.0028	1733	350
0.04	449	658	0.67	0.0023	1928	320
0.08	474	679	0.68	0.0021	2126	291
0.12	502	726	0.69	0.0024	2405	267
0.16	507	546	0.67	0.0026	2691	235

The various electromechanical properties for Pb_{1-x}Ba_xSNZT-Mn ceramics.

Table S1

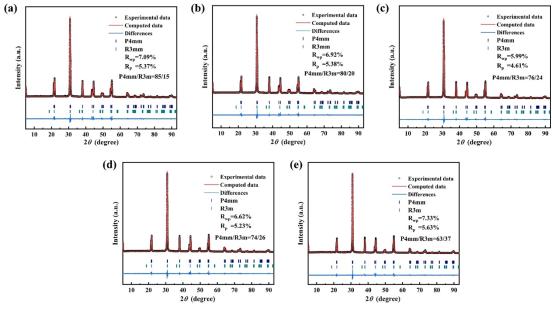


Figure S1. Rietveld refinement of the $Pb_{1-x}Ba_xSNZT$ -Mn ceramics: (a) x = 0.00, (b) x = 0.04, (c) x = 0.08, (d) x = 0.12, and (e) x = 0.16.

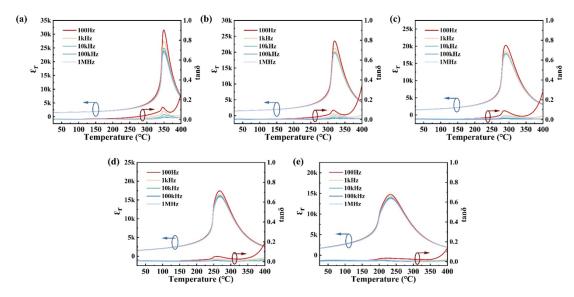


Figure S2. Temperature-dependent permittivity and dielectric loss of $Pb_{1-x}Ba_xSNZT$ -Mn ceramics: (a) x = 0.00, (b) x = 0.04, (c) x = 0.08, (d) x=0.12, and (e) x = 0.16.

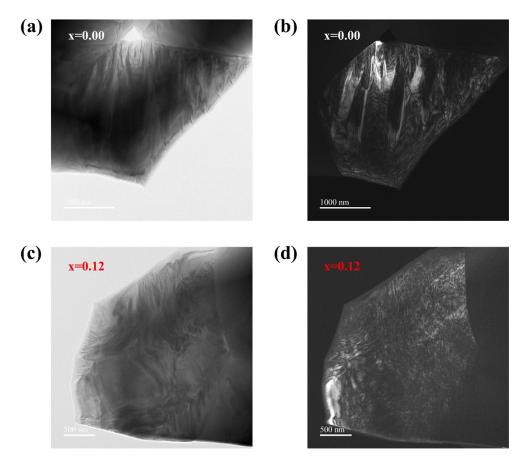


Figure S3. (a,c) Bright-field and (b,d) Dark-field TEM images showing the ferroelectric domains of the x = 0.00 and x = 0.12 ceramic samples, respectively.

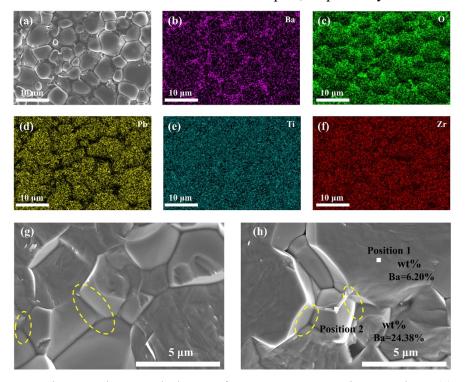


Figure S4. Microscopic morphology of x = 0.12 ceramic samples: (a) surface morphology, (b-f) element distributions, (g-h) cross-sectional morphology.

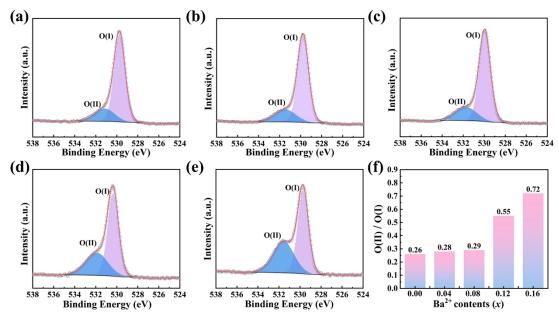


Figure S5. XPS spectrum of O 1s peak of $Pb_{1-x}Ba_xSNZT$ -Mn ceramics: (a) x = 0.00, (b) x = 0.04, (c) x = 0.08, (d) x=0.12, and (e) x = 0.16. (f) The area ratios of the two subpeaks in XPS O 1s spectra.