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S1. PEDOT:PSS as gate the electrode; 

 

Few applications may require the use of OMEICs as the gate electrode, such as PEDOT:PSS in 

modified gate electrodes. In this case, a similar approach as given to Ag/AgCl in the main text 

can be used in the PEDOT:PSS. The electrochemical equilibrium describing the OECT device 

must be rewritten, accounting to the reaction occurring at the PEDOT:PSS gate electrode 

described by: 

𝑃𝐸𝐷𝑂𝑇+: 𝑃𝑆𝑆− + 𝑒− ⇄ 𝑃𝐸𝐷𝑂𝑇0 + 𝑃𝑆𝑆− (S1) 

where, 𝑃𝐸𝐷𝑂𝑇+ and 𝑃𝐸𝐷𝑂𝑇0 are the oxidized and reduced species of gate electrode. 

Considering the OECT with a p-type material in the channel, the same reaction as Equation 6 in 

the main text can be used: 

𝑂𝑥𝑖𝑑𝑖𝑧𝑒𝑑
+ + 𝑒− ⇄ 𝑅𝑒𝑑𝑢𝑐𝑒𝑑

0  (S2) 

Coupling the reaction at the gate electrode (Equation S1) to the channel reaction (Equation S2) 

leads to the global electrochemical reaction (Equation S3), and its respective Nernst Equation 

(Equation S4): 

𝑂𝑥+ + 𝑃𝐸𝐷𝑂𝑇0 + 𝑃𝑆𝑆− ⇄  𝑅𝑒𝑑0 + 𝑃𝐸𝐷𝑂𝑇+: 𝑃𝑆𝑆− (S3) 

ℰ =  ℰ𝑝𝑜𝑙
⊖ − ℰ𝑃𝐸𝐷𝑂𝑇

⊖ −
𝑅𝑇

𝑛𝐹
ln

[𝑃𝐸𝐷𝑂𝑇+][𝑅𝑒𝑑0]

[𝑃𝐸𝐷𝑂𝑇0][𝑂𝑥+]
  

(S4) 

Notice that there is a dependence on the concentrations of the reduced and oxidized species, 

both in the channel and at the gate electrode. Thus, this electrochemical equilibrium is valid 

only as long as there are electrochemically active species to sustain the reaction (Equation S3). 

In this case, certain considerations can be made. The first is to assume, as in the main text, a 

single-electron reaction, where one charge depleted at the gate electrode results in one charge 
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created at the channel. The second is assuming that are enough species ate gate electrode to 

fully oxidize the OECT channel, the concentration of reduced (𝐶𝑅𝑒𝑑0) and oxidized at channel 

(𝐶𝑂𝑥+) can be considered equal to 𝐶𝑃𝐸𝐷𝑂𝑇+ and 𝐶𝑃𝐸𝐷𝑂𝑇0, respectively. The model 

development can then follow the same conditions as for the Ag/AgCl gate electrode.  

However, once the species at the gate electrode are fully consumed, the electrochemical 

equilibrium is no longer valid, a double layer forms at the gate electrode, and additional 

considerations must be made. 

  

S2. Model development to an n-type channel polymer; 

 

Considering OECTs with n-type active material, the global electrochemical reaction is given by: 

𝑂𝑥𝑖𝑑𝑖𝑧𝑒𝑑
0 + 𝐴𝑔0 + 𝐶𝑙− → 𝑅𝑒𝑑𝑢𝑐𝑒𝑑

− + 𝐴𝑔𝐶𝑙 (S5) 

where 𝑂𝑥𝑖𝑑𝑖𝑧𝑒𝑑
0  is the polymer on neutral state, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑑

−  its reduced state with excess of 

negative charges. Giving the same treatment as for p-type material, Nernst equation can be 

written as Equation (S6) 

ℰ𝑐ℎ = ℰ𝑝𝑜𝑙
⊖ −

𝑅𝑇

𝐹
ln

𝐶𝑅𝑒𝑑−

𝐶𝑂𝑥0
 (S6) 

Δ𝑉𝑚𝑒𝑎𝑠 =  ℰ𝑐ℎ − ℰ𝑔 =  ℰ𝑝𝑜𝑙
⊖ − ℰ𝑔 −

𝑅𝑇

𝐹
ln

𝐶𝑅𝑒𝑑−

𝐶𝑂𝑥0
 (S7) 

Δ𝑉𝑚𝑒𝑎𝑠 = ℰ𝑝𝑜𝑙
⊖′

−
𝑅𝑇

𝐹
ln

𝐶𝑅𝑒𝑑−

𝐶𝑂𝑥0

 (S8) 

with ℰ𝑝𝑜𝑙
⊖′

=  ℰ𝑝𝑜𝑙
⊖  −  ℰg.  

Here, the density of available states is considered as coming from the contribution of carries 

concentration (𝜌𝑚𝑎𝑥) of reduced and oxidized species as Equation (S9). However, different 

from the approach to p-type material, in n-type materials the active species carrier’s (𝜌
𝑅𝑒𝑑−) 

corresponds to the reduced one (𝐶𝑅𝑒𝑑−): 

𝜌𝑚𝑎𝑥 =  𝐶𝑅𝑒𝑑− + 𝐶𝑂𝑥0  (S9) 

𝜌𝑂𝑥0 = 𝜌𝑚𝑎𝑥 − 𝜌𝑅𝑒𝑑−  (S10) 

Plugging Equation (S9) and (S10) into Equation (S8) produces : 

Δ𝑉𝑚𝑒𝑎𝑠 = ℰ𝑝𝑜𝑙
⊖′

−
𝑅𝑇

𝐹
𝑙𝑛  

𝜌𝑅𝑒𝑑−

𝜌𝑚𝑎𝑥 −  𝜌𝑅𝑒𝑑−
 (S11) 

Equation (S11), can be applied to a local x position of channel, and assume the following 

format: 



Δ𝑉𝑥,𝑔 = ℰ(𝑥) − ℰ𝑔 =  ℰ𝑝𝑜𝑙
⊖′

−
𝑅𝑇

𝐹
𝑙𝑛  

𝜌𝑅𝑒𝑑−(𝑥)

𝜌𝑚𝑎𝑥 − 𝜌𝑅𝑒𝑑−(𝑥)
 (S12) 

Given the local carrier concentration can be written as: 

𝜌𝑅𝑒𝑑−(𝑥) =
𝜌𝑚𝑎𝑥 exp [

𝐹
𝑅𝑇 (ℰ𝑝𝑜𝑙

⊖′

− ℰ(𝑥) + ℰ𝑔)]

1 + exp [
𝐹

𝑅𝑇 (ℰ𝑝𝑜𝑙
⊖′

− ℰ(𝑥) + ℰ𝑔)]
 (S13) 

Here, the local carrier concentration (𝜌
𝑅𝑒𝑑−(𝑥)) is coupled on Ohm’s law (Equation (S14)- 

(S19)). 

𝐽(𝑥) =  −𝐹𝜇𝑒𝜌(𝑥)
𝑑ℰ(𝑥)

𝑑𝑥
 

(S14) 

Considering the contribution from doped and undoped species, Ohm’s Law can be rewritten as: 

𝐽(𝑥) =  −𝐹(𝜇𝑂𝑥0𝜌𝑂𝑥0(𝑥) + 𝜇𝑅𝑒𝑑−𝜌𝑅𝑒𝑑−(𝑥))
𝑑ℰ(𝑥)

𝑑𝑥
 

(S15) 

𝐽(𝑥) =  −𝐹 (𝜇𝑂𝑥0(𝜌𝑚𝑎𝑥 − 𝜌𝑅𝑒𝑑−(𝑥)) + 𝜇𝑅𝑒𝑑−𝜌𝑅𝑒𝑑−(𝑥))
𝑑ℰ(𝑥)

𝑑𝑥
 

(S16) 

𝐽(𝑥) =  −𝐹(𝜇𝑂𝑥0𝜌𝑚𝑎𝑥 − 𝜇𝑂𝑥0𝜌𝑅𝑒𝑑−(𝑥) + 𝜇𝑅𝑒𝑑−𝜌𝑅𝑒𝑑−(𝑥))
𝑑ℰ(𝑥)

𝑑𝑥
 

(S17) 

𝐽(𝑥) =  −𝐹(𝜇𝑂𝑥0𝜌𝑚𝑎𝑥 + (𝜇𝑅𝑒𝑑− − 𝜇𝑂𝑥0)𝜌𝑅𝑒𝑑−(𝑥))
𝑑ℰ(𝑥)

𝑑𝑥
 

(S18) 

Applying the carrier concentration defined in Equation (S13): 

𝐽(𝑥) =  −𝐹 (𝜇𝑂𝑥0𝜌𝑚𝑎𝑥 + (𝜇𝑅𝑒𝑑− − 𝜇𝑂𝑥0)
𝜌𝑚𝑎𝑥 exp [

𝐹
𝑅𝑇

(ℰ𝑝𝑜𝑙
⊖′

− ℰ(𝑥) + ℰ𝑔)]

1 + exp [
𝐹

𝑅𝑇
(ℰ𝑝𝑜𝑙

⊖′
− ℰ(𝑥) + ℰ𝑔)]

)
𝑑ℰ

𝑑𝑥
 (S19) 

Expressing Equation (S19) in terms of the channel’s geometric parameters, with w, h, and l 

representing the width, thickness, and length of the channel, respectively: 

𝐼𝑑𝑠(𝑥)

𝑤ℎ
= −𝐹 (𝜇𝑂𝑥0𝜌𝑚𝑎𝑥 + (𝜇𝑅𝑒𝑑− − 𝜇𝑂𝑥0)

𝜌𝑚𝑎𝑥 exp [
𝐹

𝑅𝑇
(ℰ𝑝𝑜𝑙

⊖′
− ℰ(𝑥) + ℰ𝑔)]

1 + exp [
𝐹

𝑅𝑇
(ℰ𝑝𝑜𝑙

⊖′
− ℰ(𝑥) + ℰ𝑔)]

)
𝑑ℰ

𝑑𝑥
 (S20) 

Integrating Equation (S20) over the channel dimensions (Equation (S21)), the analytical 

equation that describes drain-source current for OECT steady state operation considering an n-

type channel device can be obtained. 

∫
𝐼𝑑𝑠(𝑥)

𝑤ℎ

𝑙

0

𝑑𝑥 =   ∫ 𝐹 (𝜇𝑂𝑥0𝜌𝑚𝑎𝑥 + (𝜇𝑅𝑒𝑑− − 𝜇𝑂𝑥0)
𝜌𝑚𝑎𝑥 exp [

𝐹
𝑅𝑇 (ℰ𝑝𝑜𝑙

⊖′

− ℰ(𝑥) + ℰ𝑔)]

1 + exp [
𝐹

𝑅𝑇 (ℰ𝑝𝑜𝑙

⊖′

− ℰ(𝑥) + ℰ𝑔)]
) 𝑑ℰ

ℰ𝑑

ℰ𝑠

 (S21) 



𝐼𝑑𝑠 =
𝑤ℎ

𝑙
(𝜇𝑂𝑥0𝜌𝑚𝑎𝑥𝐹(ℰ𝑑 − ℰ𝑠) + (𝜇𝑅𝑒𝑑−𝜌𝑚𝑎𝑥𝐹 − 𝜇𝑂𝑥0𝜌𝑚𝑎𝑥𝐹)

𝑅𝑇

𝐹
𝑙𝑛 [

1 + exp [
𝐹

𝑅𝑇
(ℰ𝑝𝑜𝑙

⊖′
+ ℰ𝑔 − ℰ𝑠)]

1 + exp [
𝐹

𝑅𝑇
(ℰ𝑝𝑜𝑙

⊖′
− ℰ𝑑 + ℰ𝑠)]

]) 
(S22) 

Equation (S22) can be simplified considering that the electrode potentials (ℰ) can be rewritten 

as the gate (Δ𝑉𝑔𝑠) and drain (Δ𝑉𝑑𝑠) potential applied into the device (Equations (S23) – (S25)). 

Δ𝑉𝑑𝑠 =  ℰ𝑑 − ℰ𝑠 (S23) 

Δ𝑉𝑔𝑠 =  ℰ𝑔 − ℰ𝑠 (S24) 

Δ𝑉𝑑𝑔 = ℰ𝑑 − ℰ𝑔 = Δ𝑉𝑑𝑠 − Δ𝑉𝑔𝑠 (S25) 

The final Equation (S26) describes drain-source current for OECT steady-state operation 

considering a n-type channel device: 

𝐼𝑑𝑠 =
𝑤ℎ

𝑙
(𝜇𝑂𝑥0𝜌𝑚𝑎𝑥𝐹Δ𝑉𝑑𝑠 + (𝜇𝑅𝑒𝑑−𝜌𝑚𝑎𝑥𝐹 − 𝜇𝑂𝑥0𝜌𝑚𝑎𝑥𝐹)

𝑅𝑇

𝐹
𝑙𝑛 [

1 + exp [
𝐹

𝑅𝑇
(ℰ𝑝𝑜𝑙

⊖′

+ Δ𝑉𝑔𝑠)]

1 + exp [
𝐹

𝑅𝑇
(ℰ𝑝𝑜𝑙

⊖′
− Δ𝑉𝑑𝑠 + Δ𝑉𝑔𝑠)]

]) 
(S26) 

In terms of dimensional analysis, the pre-factor product 𝜇𝜌𝑚𝑎𝑥𝐹 has S·cm-1 as unity. This, in 

particular, allows us to rewrite Equation (S26) considering the conductivity of the channel 

device. The terms related to 𝜇𝑅𝑒𝑑0 originate the residual conductivity of the channel (𝜎𝑟𝑒𝑠), and 

those related to 𝜇𝑂𝑥+, give origin to the actual conductivity of the channel (𝜎). The final drain 

current Equation for the p-type active layer is shown in Equation (S27). 

𝐼𝑑𝑠 =
𝑤ℎ

𝑙
(𝜎𝑟𝑒𝑠Δ𝑉𝑑𝑠 + (𝜎 − 𝜎𝑟𝑒𝑠)

𝑅𝑇

𝐹
𝑙𝑛 [

1 + exp [
𝐹

𝑅𝑇
(ℰ𝑝𝑜𝑙

⊖′

+ Δ𝑉𝑔𝑠)]

1 + exp [
𝐹

𝑅𝑇
(ℰ𝑝𝑜𝑙

⊖′
− Δ𝑉𝑑𝑠 + Δ𝑉𝑔𝑠)]

]) (S27) 

 

 

S3. Mathematical development to a p-type channel polymer: 

Here we present a calculation from Equation 15 to 21 in the main text. 

Through the Ohm’s law as below: 

𝐽(𝑥) =  −𝐹𝜇𝑒𝜌(𝑥)
𝑑ℰ(𝑥)

𝑑𝑥
 

(S28) 

and considering the contribution from doped and undoped species, Ohm’s Law is rewritten as: 

𝐽(𝑥) =  −𝐹(𝜇𝑅𝑒𝑑0𝜌𝑅𝑒𝑑0(𝑥) + 𝜇𝑂𝑥+𝜌𝑂𝑥+(𝑥))
𝑑ℰ(𝑥)

𝑑𝑥
 

(S29) 

here 𝜇 and 𝜌 are the electronic mobility and carrier density, respectively for reduced (𝑅𝑒𝑑0) 

and oxidized (𝑂𝑥+) states. Plugging in Equations (S30) and (S31), see below, into Equation 

(S29), produces Equation (S5) as follows: 



𝜌𝑚𝑎𝑥 =  𝐶𝑅𝑒𝑑0 + 𝐶𝑂𝑥+ = 𝜌𝑅𝑒𝑑0 + 𝜌𝑂𝑥+ (S30) 

𝜌𝑅𝑒𝑑0 = 𝜌𝑚𝑎𝑥 − 𝜌𝑂𝑥+  (S31) 

𝐽(𝑥) =  −𝐹 (𝜇𝑅𝑒𝑑0(𝜌𝑚𝑎𝑥 − 𝜌𝑂𝑥+(𝑥)) + 𝜇𝑂𝑥+𝜌𝑂𝑥+(𝑥))
𝑑ℰ(𝑥)

𝑑𝑥
 

(S32) 

𝐽(𝑥) =  −𝐹(𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥 − 𝜇𝑅𝑒𝑑0𝜌𝑂𝑥+(𝑥) + 𝜇𝑂𝑥+𝜌𝑂𝑥+(𝑥))
𝑑ℰ(𝑥)

𝑑𝑥
 

(S33) 

𝐽(𝑥) =  −𝐹(𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥 + (𝜇𝑂𝑥+ − 𝜇𝑅𝑒𝑑0)𝜌𝑂𝑥+(𝑥))
𝑑ℰ(𝑥)

𝑑𝑥
 

(S34) 

 

The carrier concentration was previously defined as (Equation 14 in the main text): 

𝜌(𝑥) =
𝜌𝑚𝑎𝑥

1 + exp [−
𝐹

𝑅𝑇 ( ℰ(𝑥) − ℰ𝑔 − ℰ𝑝𝑜𝑙
⊖′

)]
 (S35) 

Equation (S34) assumes the form of: 

𝐽(𝑥) =  −𝐹 (𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥 +
𝜇𝑂𝑥+𝜌𝑚𝑎𝑥 − 𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥

1 + exp [−
𝛾𝐹
𝑅𝑇 ( ℰ(𝑥) − ℰ𝑔 − ℰ𝑝𝑜𝑙

⊖′
)]

) 
𝑑ℰ(𝑥)

𝑑𝑥
 (S36) 

To obtain the drain-current equation along the channel, Equation (S36) is then expressed in 
terms of the channel’s geometric parameters, with w, h, and l representing the width, 
thickness, and length of the channel in centimeters, respectively, and: 

𝐼𝑑𝑠(𝑥)

𝑤ℎ
= −𝐹 (𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥 +

𝜇𝑂𝑥+𝜌𝑚𝑎𝑥 − 𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥

1 + exp [
𝛾𝐹
𝑅𝑇 (ℰ𝑝𝑜𝑙

⊖′
− ℰ(𝑥) + ℰ𝑔)]

)
𝑑ℰ

𝑑𝑥
 (S37) 

∫
𝐼𝑑𝑠(𝑥)

𝑤ℎ

𝑙

0

𝑑𝑥 = −𝐹 ∫ (𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥 +
𝜇𝑂𝑥+𝜌𝑚𝑎𝑥 − 𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥

1 + exp [
𝛾𝐹
𝑅𝑇

(ℰ𝑝𝑜𝑙
⊖′

− ℰ(𝑥) + ℰ𝑔)]
) 𝑑ℰ

ℰ𝑑

ℰ𝑠

 (S38) 

Equation (S38) can be readily integrated to produce: 

𝐼𝑑𝑠 =
𝑤ℎ

𝑙
(𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥𝐹(ℰ𝑑 − ℰ𝑠) + (𝜇𝑂𝑥+𝜌𝑚𝑎𝑥𝐹 − 𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥𝐹)

𝑅𝑇

𝐹
𝑙𝑛 [

1 + 𝑒𝑥𝑝 [
𝐹

𝑅𝑇 (ℰ𝑑 − ℰ𝑔 − ℰ𝑝𝑜𝑙
⊖′

)] 

1 + 𝑒𝑥𝑝 [
𝐹

𝑅𝑇 (ℰ𝑠 − ℰ𝑔 − ℰ𝑝𝑜𝑙
⊖′

)] 
]) 

(S39) 

Considering that the applied potentials on gate (Δ𝑉𝑔𝑠) and drain (Δ𝑉𝑑𝑠) electrodes could be 

rewritten as function of electrode potentials (ℰ): 

Δ𝑉𝑑𝑠 =  ℰ𝑑 − ℰ𝑠 (S40) 



Δ𝑉𝑔𝑠 =  ℰ𝑔 − ℰ𝑠 (S41) 

Δ𝑉𝑑𝑔 = ℰ𝑑 − ℰ𝑔 = Δ𝑉𝑑𝑠 − Δ𝑉𝑔𝑠 (S42) 

Equation (S39), can assume the form of: 

𝐼𝑑𝑠 =
𝑤ℎ

𝑙
(𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥𝐹Δ𝑉𝑑𝑠 + (𝜇𝑂𝑥+𝜌𝑚𝑎𝑥𝐹 − 𝜇𝑅𝑒𝑑0𝜌𝑚𝑎𝑥𝐹)

𝑅𝑇

𝐹
𝑙𝑛 [

1 + 𝑒𝑥𝑝 [
𝐹

𝑅𝑇
(Δ𝑉𝑑𝑠 − Δ𝑉𝑔𝑠 − ℰ𝑝𝑜𝑙

⊖′
)] 

1 + 𝑒𝑥𝑝 [
𝐹

𝑅𝑇
(−Δ𝑉𝑔𝑠 − ℰ𝑝𝑜𝑙

⊖′
)] 

]) (S43) 

 

In terms of dimensional analysis, the pre-factor product 𝜇𝜌𝑚𝑎𝑥𝐹 has S·cm-1 as unity. This, in 

particular, allows us to rewrite Equation (S43) considering the conductivity of the channel 

device. The terms related to 𝜇𝑅𝑒𝑑0 originate the residual conductivity of the channel (𝜎𝑟𝑒𝑠), and 

those related to 𝜇𝑂𝑥+, give origin to the actual conductivity of the channel (𝜎). The final drain 

current Equation for the p-type active layer is shown in Equation (S44). 

 

𝐼𝑑𝑠 =
𝑤ℎ

𝑙
(𝜎𝑟𝑒𝑠Δ𝑉𝑑𝑠 + (𝜎 − 𝜎𝑟𝑒𝑠)

𝑅𝑇

𝛾𝐹
 𝑙𝑛 [

1 + 𝑒𝑥𝑝 [
𝛾𝐹
𝑅𝑇

(Δ𝑉𝑑𝑠 − Δ𝑉𝑔𝑠 − ℰ𝑝𝑜𝑙
⊖′

)] 

1 + 𝑒𝑥𝑝 [
𝛾𝐹
𝑅𝑇

(−Δ𝑉𝑔𝑠 − ℰ𝑝𝑜𝑙
⊖′

)] 
]) (S44) 

 

 

S4. Effects of 𝝈𝟎 and 𝝈 over output and transfer curves. 

 

As shown in Figure S1, for the output curves (Figure S1(a)), 𝜎𝑟𝑒𝑠  influences the 

saturation level. The effect is significant for source-drain curves and with ON/OFF current ratios 

smaller than 102  (Figure S1(a)). Since OECTs generally have ON/OFF ratios of 103 to 106, the 

effects of 𝜎0 on the output curves are considerably reduced. 

In contrast, for the transfer curves (Figure S1(b-c) and (e-f)), 𝜎𝑟𝑒𝑠 is related to a plateau 

in the source-drain current for potentials smaller than that for channel doping. On this curve 

region, for a 𝛥𝑉𝑑𝑠 > 0 for an oxidation reaction, the channel is in the undoped condition, and 

the curves can be used to determine resistivity in the channel and estimate 𝜎𝑟𝑒𝑠. This residual 

conductivity 𝜎𝑟𝑒𝑠 is used as a fixed input parameter to perform the experimental curves' 

fittings.  



Figure S1 – Effects of 𝜎𝑟𝑒𝑠 over output (a) and (d) at 𝛥𝑉𝑔𝑠 = −0.5 𝑉, transfer (b-c) and (e-f) curves, for different 

ranges of 𝜎0 in ideal case at 𝛥𝑉𝑑𝑠 = −0.5 𝑉. Here were used the following parameters w = 1.5 mm, h = 100 nm, l = 

250 um, 𝜎 = 1.5 S·cm-1, ℰ𝑝𝑜𝑙
⊖′

 = 0 V, T = 298.15 K.  

 

𝜎 (Figure S2), on the other hand, will directly impact the saturation of the output and 

transfer curves, as well as the ON/OFF ratio of the devices, making it a relevant parameter 

mainly for the transduction of ionic signal into the electronic one. 

Figure S2 – Effects of 𝜎 over (a) output at 𝛥𝑉𝑔𝑠 = −0.5 𝑉, (b) and (c) transfer curves at 𝛥𝑉𝑑𝑠 = −0.5 𝑉 in ideal case. 

Here were used the following parameters w = 1.5 mm, h = 100 nm, l = 250 um, 𝜎𝑟𝑒𝑠 = 1E-4 S·cm-1, ℰ𝑝𝑜𝑙
⊖′

 = 0 V, T = 

298.15 K. 

 

 

S5. Non-Nernstian behavior and activity coefficient 

As presented in the model development section, the Nernst equation for a 
monoelectronic reaction can be approximated as: 

ℰ =  ℰ𝑝𝑜𝑙
⊖′

−
𝑅𝑇

𝐹
ln

𝑎𝑅𝑒𝑑0

𝑎𝑂𝑥+
≈ ℰ𝑝𝑜𝑙

⊖′

−
𝑅𝑇

𝐹
ln

𝐶𝑅𝑒𝑑0

𝐶𝑂𝑥+
 (S45) 

Where 𝑎 corresponds to the activities for the species (𝑅𝑒𝑑0) and oxidized (𝑂𝑥+). 
Species activity is related to concentrations through the relationship 𝑎𝑖 = 𝛾𝑖𝐶𝑖, where 𝛾𝑖  
corresponds to the activity coefficient of the species of interest. When 𝛾𝑖 = 1, 𝑎𝑖 = 𝐶𝑖 and the 
system behaves ideally. On the other hand, equation S38 can be rewritten as a function of 
activity coefficients: 

ℰ =  ℰ𝑝𝑜𝑙
⊖′

−
𝑅𝑇

𝐹
ln

𝛾𝑅𝑒𝑑0𝐶𝑅𝑒𝑑0

𝛾𝑂𝑥+𝐶𝑜𝑥+
 (S46) 



Equation S40 is valid for any system (ideal and non-ideal). When for 𝛾𝑖 = 1, 𝑎𝑖 =
𝐶𝑖 and the system behaves ideally. On the other hand, as discussed in the main text, 
semiconductor polymer systems are known to exhibit non-ideal behavior, and therefore the 
Nernst equation relates to concentrations as (Equation 23 in the main text): 

ℰ𝑛𝑜𝑛−𝑖𝑑 = ℰ𝑝𝑜𝑙
⊖′

−
𝑅𝑇

𝛾𝐹
ln

𝐶𝑅𝑒𝑑0

𝐶𝑂𝑥+
 (S47) 

Correlating equations S39 and S40, we have: 

ln
𝛾𝑅𝑒𝑑0𝐶𝑅𝑒𝑑0

𝛾𝑂𝑥+𝐶𝑜𝑥+
=

1

𝛾
ln (

𝐶𝑅𝑒𝑑0

𝐶𝑂𝑥+
) (S48) 

ln
𝛾𝑅𝑒𝑑0

𝛾𝑂𝑥+
+ ln

𝐶𝑅𝑒𝑑0

𝐶𝑜𝑥+
=

1

𝛾
ln (

𝐶𝑅𝑒𝑑0

𝐶𝑂𝑥+
) (S49) 

ln
𝛾𝑅𝑒𝑑0

𝛾𝑂𝑥+
=

1

𝛾
ln (

𝐶𝑅𝑒𝑑0

𝐶𝑂𝑥+
) − ln (

𝐶𝑅𝑒𝑑0

𝐶𝑜𝑥+
) (S50) 

ln
𝛾𝑅𝑒𝑑0

𝛾𝑂𝑥+
= (

1 − 𝛾

𝛾
) ln (

𝐶𝑅𝑒𝑑0

𝐶𝑂𝑥+
) (S51) 

ln
𝛾𝑅𝑒𝑑0

𝛾𝑂𝑥+
= ln (

𝐶𝑅𝑒𝑑0

𝐶𝑂𝑥+
)

(
1−𝛾

𝛾
)

 
(S52) 

Applying the property 𝑒ln(𝑥) = 𝑥 to equation S45, we obtain the following relationship: 

𝛾𝑅𝑒𝑑0

𝛾𝑂𝑥+
= (

𝐶𝑅𝑒𝑑0

𝐶𝑂𝑥+
)

(
1−𝛾

𝛾
)

 
(S53) 

Here it is possible to verify that the activity coefficients for the concentrations of the 
species involved in the reaction are related to the 𝛾 calculated for the model, corresponding to 
the deviation in concentrations due to the contribution of the ionic environment present in the 
system. 

 

S6. Transconductance equations for non-ideal case and dependencies with 𝝈, 𝜸 and  𝓔𝒑𝒐𝒍
⊖′

; 

The transistor’s transconductance (𝑔𝑚) is defined as: 

𝑔𝑚 =
𝜕𝐼𝑑𝑠

𝜕𝑉𝑔𝑠
 (S54) 

and reflects the output gain (amplification) the device is capable of producing. Through our 
model, one can readily derive Equation S17 and S37 to obtain the transconductances’ formulas 
for p-type and n-type OECTs, respectively. The expressions are presented below, and, for the 

non-ideal case, are dependent on 𝜎, 𝛾 and  ℰ𝑝𝑜𝑙
⊖′

, besides the geometrical and voltages 

dependencies. 



p-type 𝑔
𝑚

=  
𝑤ℎ

𝑙
((𝜎 − 𝜎𝑟𝑒𝑠) [

1

1 + exp [
𝛾𝐹
𝑅𝑇

(𝛥𝑉𝑔𝑠 + ℰ𝑝𝑜𝑙
⊖′

)]
−

1

1 + exp [
𝛾𝐹
𝑅𝑇

(−Δ𝑉𝑑𝑠 + 𝛥𝑉𝑔𝑠 + ℰ𝑝𝑜𝑙
⊖′

)]
]) 

(S55) 

n-type 𝑔
𝑚

=  
𝑤ℎ

𝑙
((𝜎 − 𝜎𝑟𝑒𝑠) [

1

1 + exp [
𝛾𝐹
𝑅𝑇

(−Δ𝑉𝑑𝑠 + 𝛥𝑉𝑔𝑠 + ℰ𝑝𝑜𝑙
⊖′

)]
−

1

1 + exp [
𝛾𝐹
𝑅𝑇

(𝛥𝑉𝑔𝑠 + ℰ𝑝𝑜𝑙
⊖′

)]
]) 

(S56) 

 

We have used Equation S48 to reconstruct the transconductance’s traces, for several 

conditions as can be seen in Figure S3. In Figure S3(a), 𝛾, ℰ𝑝𝑜𝑙
⊖′

 and 𝜎 were all kept constant, and 

only Δ𝑉𝑑𝑠 was varied, simulating transconductances curves derivate from transfer curves.   

In Figure S3(b) – (d), only one of the fittings parameters was varied at a time. 
Interestingly to note that each of the parameters affect one particular feature in the 
transconductance curve: Δ𝑉𝑑𝑠, as already from experimental data, varies the 𝑔𝑚 intensities 
and maximum position. The novelties, here, are the other three curves. 𝛾, (Figure S3 (b)) 
basically, changes the full width at half maximum (FWHM) of the transconductance curves. 

While ℰ𝑝𝑜𝑙
⊖′

 (Figure S3 (c)) doesn’t affect the FWHM, nor the peak intensity; it only affects, as 

expected, the peak position. Higher ℰ𝑝𝑜𝑙
⊖′

 would lead to transconductance peaks at higher Δ𝑉𝑔𝑠. 

Finaly, 𝜎 (Figure S3 (d)) only affect the peak intensity, keeping the FWHM and peak position 
unvaried. Therefore, our model provides a robust expression with fundamentally justified 
parameters, that univocally alter a specific feature of the output characteristic of the OECT 
device. 

Figure S3 - (a) transconductance for non-ideal behavior case for a p-type OECT channel, influence of (b) 𝛾, (c) ℰ𝑝𝑜𝑙
⊖′

, 

and (d) 𝜎 on transconductance at 𝛥𝑉𝑑𝑠 = -0.5 V.  Here were used the following parameters w = 1.5 mm, h = 100 nm, l 

= 250 um, 𝜎 = 1.5 S·cm-1, 𝜎𝑟𝑒𝑠 = 1E-4 S·cm-1, ℰ𝑝𝑜𝑙
⊖′

 = 0 V, T = 298.15 K, and 𝛾 = 0.4. 

 

 



S7. Additional statistical parameters of the model fit for experimental data from the 
literature 

 

A 95% confidence interval was adopted for the fittings of the experimental data 
presented in the literature. The p-values for the calculated parameters can be found in the Table 

S1 and Table S2. 

 

Table S1 – p-values calculated for the fit parameters from Flagg et al 26 (Figure 5). 

 𝝈 𝜸 𝓔𝒑𝒐𝒍
⊖′

 

TFSI- 2.315E-65 1.475E-26 4.719E-11 

PF6
- 9.122E-52 1.224E-31 6.900E-29 

ClO4
- 2.095E-79 4.679E-38 3.513E-70 

Cl- 1.170E-49 4.213E-20 7.512E-60 

 

 

Table S2 - p-values calculated for the fit parameters from Rivnay et al 46 (Figure 6). 

 𝝈 𝜸 𝓔𝒑𝒐𝒍
⊖′

 

0% 1.710E-22 9.911E-15 0.048 

5% 1.022E-45 1.251E-31 1.068E-36 

20% 7.261E-61 1.182E -47 8.959E-48 

50% 3.876E-55 1.359E-40 7.042E-50 

 

 

  



S8. Summary of equation and variables 

 p-type n-type 

Reaction 
Direction 

𝑂𝑥𝑖𝑑𝑖𝑧𝑒𝑑
+ + 𝑒− → 𝑅𝑒𝑑𝑢𝑐𝑒𝑑

0  𝑂𝑥𝑖𝑑𝑖𝑧𝑒𝑑
0 + 𝑒− → 𝑅𝑒𝑑𝑢𝑐𝑒𝑑

−  

Active specie 
carrier 

𝜌 = 𝐶𝑂𝑥+ 𝜌 = 𝐶𝑅𝑒𝑑− 

Channel current 
Equation 

𝐼𝑑𝑠

=
𝑤ℎ

𝑙
(𝜎𝑟𝑒𝑠Δ𝑉𝑑𝑠 + (𝜎 − 𝜎𝑟𝑒𝑠)

𝑅𝑇

𝛾𝐹
 

𝑙𝑛 [
1 + 𝑒𝑥𝑝 [

𝛾𝐹
𝑅𝑇

(Δ𝑉𝑑𝑠 − Δ𝑉𝑔𝑠 − ℰ𝑝𝑜𝑙
⊖′

)] 

1 + 𝑒𝑥𝑝 [
𝛾𝐹
𝑅𝑇

(−Δ𝑉𝑔𝑠 − ℰ𝑝𝑜𝑙
⊖′

)] 
]) 

𝐼𝑑𝑠

=
𝑤ℎ

𝑙
(𝜎𝑟𝑒𝑠Δ𝑉𝑑𝑠 + (𝜎 − 𝜎𝑟𝑒𝑠)

𝑅𝑇

𝐹

𝑙𝑛 [
1 + exp [

𝐹
𝑅𝑇

(ℰ𝑝𝑜𝑙
⊖′

+ Δ𝑉𝑔𝑠)]

1 + exp [
𝐹

𝑅𝑇
(ℰ𝑝𝑜𝑙

⊖′
− Δ𝑉𝑑𝑠 + Δ𝑉𝑔𝑠)]

]) 

Transconductance 

𝑔𝑚

=  
𝑤ℎ

𝑙
((𝜎 − 𝜎𝑟𝑒𝑠) [

1

1 + exp [
𝛾𝐹
𝑅𝑇 (𝛥𝑉𝑔𝑠 + ℰ𝑝𝑜𝑙

⊖′
)]

−
1

1 + exp [
𝛾𝐹
𝑅𝑇 (−Δ𝑉𝑑𝑠 + 𝛥𝑉𝑔𝑠 + ℰ𝑝𝑜𝑙

⊖′
)]

]) 

𝑔𝑚

=  
𝑤ℎ

𝑙
((𝜎

− 𝜎𝑟𝑒𝑠) [
1

1 + exp [
𝛾𝐹
𝑅𝑇 (−Δ𝑉𝑑𝑠 + 𝛥𝑉𝑔𝑠 + ℰ𝑝𝑜𝑙

⊖′
)]

−
1

1 + exp [
𝛾𝐹
𝑅𝑇 (𝛥𝑉𝑔𝑠 + ℰ𝑝𝑜𝑙

⊖′
)]

]) 

 


