Supplemental Information

Multifunctional Strain-activated Liquid-metal Composite Film with Electromechanical Decoupling for Stretchable Electromagnetic Shielding

Jiali Chen, ^{a b} Xuezhe Chen, ^{a b} Yaozhuo Su, ^{a b} Bin Shen, ^{a b} * and Wenge Zheng^{a b}

^aNingbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang province, 315201, China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

Figure S1. SEM images of LMT-25 (a, b) and ALMT-25 (c,d) with corresponding EDS elemental mapping results for Ga.

Figure S2. SEM images of LMT-45 (a, b) and ALMT-45 (c,d) with corresponding EDS elemental mapping results for Ga.

Figure S3. Micro-CT image of LMT-35 during stretching.

Figure S4. Resistance versus strain of LMT-35 (rate = 0.1, 1, and 10 mm/s).

Figure S5. Resistance versus strain of LMT-25 (rate = 0.1 mm/s).

Figure S6. (a) Relative change in resistance and corresponding volumetric conductivity of ALMT-45 under strains of up to 550%, and theoretical relative change in resistance of the bulk conductor. (d) Relative change in resistance of ALMT-45 over 1000 cycles to 100% and 400% strain.

Assume that the resistance, thickness, widths, length, volume, electrical resistivity, and conductivity of the sample at time t is R_t , T_t , W_t , L_t , $V_t = W_t T_t L_t$, ρ_t , and σ_t , respectively.

At
$$t = 0$$
,
 $R_0 = \frac{\rho_0 L_0}{S_0} = \frac{\rho_0 L_0}{W_0 T_0} = \rho_0 \frac{L_0^2}{V_0} = \frac{1}{\sigma_0 V_0} \frac{L_0^2}{\sigma_0 V_0}$
At $t = t$,
 $\varepsilon_t = \frac{L_t - L_0}{L_0}$
 $R_t = \frac{\rho_t L_t}{W_t T_t} = \rho_t \frac{L_t^2}{V_t} = \frac{1}{\sigma_t V_t} \frac{L_t^2}{\sigma_t V_t} = \frac{1}{\sigma_t} \frac{(1 + \varepsilon_t)^2 L_0^2}{V_t}$
 $\frac{R_t}{R_0} = \frac{\sigma_0 V_0}{\sigma_t V_t} (1 + \varepsilon_t)^2$

The volume of the sample is assumed to be constant during stretching $(V_0 = V_t)$,

$$\frac{R_t}{R_0} = \frac{\sigma_0}{\sigma_t} (1 + \varepsilon_t)^2$$

(a) If the conductivity of the sample remains constant during stretching ($\sigma_0 = \sigma_t$),

$$\frac{R_t}{R_0} = (1 + \varepsilon_t)^2$$

(b) If conductivity changes with strain,

$$\sigma_t = \frac{\sigma_0 (1 + \varepsilon_t)^2 R_0}{R_t}$$

Figure S7. The EMI SE curves of ALMT-25.

Figure S8. Thickness variation of ALMT-35 under different strains.

Figure S9. Relative resistance change of the ALMT sensor at the knee joint during squatting.

Туре	Filler	Matrix	emax	σ0 (S/cm)	∆Rt/R0 at max strain	σt (S/cm)	QF	Ref.
	EgaInSn (35 vol%)	TPU	700%	266	0.57@700%	14000@700%	12@700%	This
	EGaInSn (45 vol%)	TPU	550%	378	0.28@550%	12700@550%	20@550%	work
	EGaInSn and Fe particles	Ecoflex	600%	/	/	25000@400%	/	1
	3D EGaIn network	Ecoflex	510%	5300	/	11000@510%	/	2
	EGaIn	SBS	1800%	100	0.04@1800%	/	2-441@1800%	3
	EGaIn	VHB	~1200%	20600	~3.5 @1200%	/	~3.4@1200%	4
	EGaIn + Ag	SIS	~1200%	8210	40~70 @1200%	/	0.3~3@1200%	5
	EGaIn	11-PUA	744%	2500	0.85@700%	20000@700%	8.2@700%	6
	EGaIn	TPU	1000%	4200	20@1000%	11100@300% 3800@1000%	0.5@1000%	7
Liquid metal fillers	EGaIn	TPU	2260%	22532	0.34@1000% 1.59@1600% 31.6@2266%	/	29.4@1000% 10.06@1600% 0.74@2266%	8
	EGaIn	TPU	4100	21000	19.8@4100%	/	9.3@4100%	9
	EGaIn	PVDF	740%	435	4@740%	/	1.85@740%	10
	EGaIn + Ag	EVA	1000%	8331	10@1000%	/	1@1000%	11
	EGaIn + Ag	SIS	100%	6380	6.78@1000%	/	1.47@1000%	12
	EGaIn + Ag	PUA	2500%	6250	9@2500%	/	2.78@2500%	13
	EGaIn + Ni	P(AAm- co-MAAc)	630%	2000	5.4@630%	/	1.17@630%	14
	EGaIn	SEBS	900%	34000	39@700%	/	0.2@700%	15
	EGaIn	PVP	800%	6900	60@800%	100	~0.13@800%	16
	EGaIn	SIS	2500%	30000	37@2500%	/	~0.68@2500%	17
Rigid	AgNPs	SEBS	180%	11.4	1.05@180%	84.6@180%	1.7@180%	18
fillers	Ag flakes	Fluorine rubber	215%	738	~39.2@215%	~180@215%	~0.055	19
	Ag flakes	Fluorine rubber	400%	4000	~106 @ 400%	950@400%	~0.038	20
	Ag flakes	PAAm alginate hydrogel	250%	374	70 @250%	/	~0.036	21
Rigid	Ag flakes	Ecoflex	1780%	~133	153 @ 1780%	/	~0.12	22
metal fillers	AuNPs	TPU	115%	11000	~20.2 @115%	210@110%	~0.057	23
	AgNW	PNIPAM	800%	93	3@700%	/	~2.3@700%	24
	AgNW/Au	SBS	840%	30000	~2649 @840%	3000@840%	~0.003	25
	Cu	rubber	100%	215	/	2@100%	/	26

 Table S1. Comparisons of stretchable conductors reported in recent literature.

Туре	Filler	Matrix	єmax	σ0 (S/cm)	∆Rt/R0 at max strain	σt (S/cm)	QF	Ref.
Carbon materials	CNT+AgNW	PVDF	140%	5710	~1306@140%	20	~0.001@140%	27
	CNT	Fluorine rubber	118%	10	~3.75@118%	10	~0.3@118%	28
	CNT	Fluorine rubber	134%	57	~51@134%	6	~0.026@134%	29
	CNT	PDMS	150%	1100	4@150%	/	0.375@150%	30
	CNT	PU	300%	0.05-1	3.2@300%	/	0.9@300%	31

SBS: poly(styrene-block-butadiene-block-styrene VHB: 3M VHB tape SIS: Styrene-isoprene block copolymers 11-PUA: 11-(phosphonoundecyl)acrylate PVDF: polyvinylidene difluoride EVA: Ethylene-Vinyl Acetate PUA: polyurethane acrylate P(AAm-co-MAAc): Poly(acrylamide-co-methacrylic acid) SEBS: poly[styrene-b-(ethylene-co-butylene)-b-styrene] PVP: Polyvinyl pyrrolidone PAAm: polyacrylamide PAM: Polyacrylamide PNIPAM: poly(N-isopropyl acrylamide) PU: polyurethane

Tab	le S2	. Coi	mparisons	of s	stretchable	EM	I shi	elding	materials	reporte	d in	recent	literature.
			1					0					

Туре	Filler	Matrix	Strain (%)	Thickness (mm)	SE (dB)	SSE (dB /mm)	Ref.
	EgaInSn (35 vol%)	TPU	0-400%	0.075-0.051	58.1-63.8	774-1241	This
Liquid	EgaInSn (45 vol%)	TPU	/	0.094	80.9	860.6	work
metal	EGaInSn and Fe particles	Ecoflex	0-400%	0.8-0.2	20.6-80.7	25.8-404	1
fillers	3D EBiInSn network	Ecoflex	0-400%	2-3.6	57.0-85.0	15.8-42.5	32
	3D EGaIn network	Ecoflex	0-400%	2-1	41.5-81.6	20.8-81.6	2
	EGaIn	PDMS	0-50%	2.4	50.0-43.5	20.8-18.1	33
	EGaIn	PDMS	0-100%	3	~37.0	12.3	34
	EGaInSn	PDMS	0-75%	0.15-0.11	43.2-44.2	288-401	35
Liquid	EGaInSn	PDMS/Textile	0-50%	0.35	72.6-52.4	149.7-207.4	36
metal fillers	EGaIn and CNT	PAM and gelatin	0-200%	1-0.22	17.7-37.4	17.7-170.0	37
	ESnBi	PVDF	/	2	68.8	34.4	38
	EGaIn	CNF	/	0.1	40.5	405.0	39
	EGaIn	EM	/	1	90.6	90.6	40

Туре	Filler	Matrix	Strain (%)	Thickness (mm)	SE (dB)	SSE (dB /mm)	Ref.
	EGaIn and Ag NPs	SEBS	300%	0.2	73.5	367.5	41
	EGaIn foam	/	/	5	65.0	13.0	42
Rigid metal fillers	AgNPs	SEBS	0-100%	2.84	28.0-55.0	19.4-9.9	18
	AgNWs	PU	0-30%	0.6	63.9-56.2	106.5-93.7	43
	Cu	rubber	0-75%	0.4	35.7-10.7	89-26.7	26
Carbon materials	CNT	PU	0-30%	2.9	36.4-20.2	12.6-7.0	44
	CNT	TPU	0-200%	2-1.56	34.6-12.8	17.3-8.2	45
	rGO	PDMS	0-100%	2.4	25.0-18.0	10.5-7.5	46
	MXene	PU	0-30%	0.2	22.0	105.0	47
	MXene	TPU	0-70%	0.3	31.4-22.0	104.7-73.3	48

PDMS: Polydimethylsiloxane CNF: Cellulose nanofibers EM: expandable microsphere

Reference

- R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui, R. Yu, C. Pan and X. Liu, *Nano Energy*, 2022, 92, 106700.
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu, R. Hu, J. Hao, C. Li, H. Li, S. E. Perini, M. T. Lanagan, S. Zhang, Q. Wang and H. Wang, *Adv. Mater.*, 2020, 32, 1907499.
- Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao, Y. Yang, H. Qiu, Z. Yang, C. Wang, Y.
 Chai and Z. Zheng, *Nat. Mater.*, 2021, 20, 859–868.
- 4 S. Liu, D. S. Shah and R. Kramer-Bottiglio, *Nat. Mater.*, 2021, **20**, 851–858.
- 5 P. A. Lopes, B. C. Santos, A. T. de Almeida and M. Tavakoli, *Nat. Commun.*, 2021, **12**, 1–10.
- 6 C. J. Thrasher, Z. J. Farrell, N. J. Morris, C. L. Willey and C. E. Tabor, *Adv. Mater.*, 2019, 31, 1903864.
- L. Tang, L. Mou, W. Zhang and X. Jiang, ACS Appl. Mater. Interfaces, 2019, 11, 7138– 7147.
- S. Chen, S. Fan, J. Qi, Z. Xiong, Z. Qiao, Z. Wu, J. C. Yeo and C. T. Lim, *Adv. Mater.*, 2023, 35, 2208569.

- W. Lee, H. Kim, I. Kang, H. Park, J. Jung, H. Lee, H. Park, J. S. Park, J. M. Yuk, S. Ryu,
 J. W. Jeong and J. Kang, *Science*, 2022, **378**, 637–641.
- 10 L. Zheng, M. Zhu, B. Wu, Z. Li, S. Sun and P. Wu, *Sci. Adv.*, 2021, 7, 4041–4069.
- J. Wang, G. Cai, S. Li, D. Gao, J. Xiong, P. See Lee, J. X. Wang, G. F. Cai, S. H. Li, D.
 C. Gao, J. Q. Xiong and P. S. Lee, *Adv. Mater.*, 2018, **30**, 1706157.
- 12 W. Zu, Y. Ohm, M. R. Carneiro, M. Vinciguerra, M. Tavakoli and C. Majidi, *Adv. Mater. Technol.*, 2022, 7, 2200534.
- K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong and P. S. Lee, *Nat. Commun.*, 2019, 10, 2158.
- X. Peng Hao, C. Yu Li, C. Wei Zhang, M. Du, Z. Ying, Q. Zheng, Z. Liang Wu, X. P. Hao, C. Y. Li, C. W. Zhang, M. Du, Q. Zheng, Z. L. Wu and Z. Ying, *Adv. Funct. Mater.*, 2021, 31, 2105481.
- S. Zhu, J. H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi and M. D. Dickey, *Adv. Funct. Mater.*, 2013, 23, 2308–2314.
- L. Tang, L. Mou, J. Shang, J. Dou, W. Zhang and X. Jiang, *Mater. Horizons*, 2020, 7, 1186–1194.
- D. Wu, S. Wu, P. Narongdej, S. Duan, C. Chen, Y. Yan, Z. Liu, W. Hong, I. Frenkel and X. He, *Adv. Mater.*, 2024, 2307632.
- Z. Liu, F. Wan, L. Mou, M. Jung de Andrade, D. Qian, R. Wang, S. Yin, K. Li, H. Chen,
 B. An, Z. Hu, H. Wang, M. Zhu, S. Fang and Z. Liu, *Adv. Electron. Mater.*, 2019, 5, 1800817.
- N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani and T. Someya, *Nat. Commun.*, 2015, 6, 7461.
- 20 N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba, A. Itoh, T. Yokota, D. Hashizume and T. Someya, *Nat. Mater.*, 2017, **16**, 834–840.
- 21 Y. Ohm, C. Pan, M. J. Ford, X. Huang, J. Liao and C. Majidi, *Nat. Electron.*, 2021, 4, 185–192.

- S. H. Kim, S. Jung, I. S. Yoon, C. Lee, Y. Oh and J. M. Hong, *Adv. Mater.*, 2018, 30, 1800109.
- Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su, J. G. Kim, S. J. Yoo, C. Uher and N. A. Kotov, *Nature*, 2013, **500**, 59–63.
- 24 P. Song, H. Qin, H.-L. Gao, H.-P. Cong and S.-H. Yu, Nat. Commun., 2018, 9, 2786.
- S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn,
 M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S.-W. Lee, K. Park, P. M. Kang, W. B. Lee, R.
 Nezafat, T. Hyeon and D.-H. Kim, *Nat. Nanotechnol.*, 2018, 13, 1048–1056.
- C. Liu, J. Cai, P. Dang, X. Li and D. Zhang, ACS Appl. Mater. Interfaces, 2020, 12, 12101–12108.
- 27 K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi and S. Baik, *Nat. Nanotechnol.*, 2010, **5**, 853–857.
- T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata and T. Someya, *Nat. Mater.*, 2009, 8, 494–499.
- T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, *Science*, 2008, 321, 1468–1472.
- 30 D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox andZ. Bao, *Nat. Nanotechnol.*, 2011, 6, 788–792.
- M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim and R. H. Baughman, *Adv. Mater.*, 2010, 22, 2663–2667.
- 32 D. Yu, Y. Liao, Y. Song, S. Wang, H. Wan, Y. Zeng, T. Yin, W. Yang and Z. He, *Adv. Sci.*, 2020, 7, 2000177.
- Z. Wang, J. Ren, R. Liu, X. Sun, D. Huang, W. Xu, J. Jiang, K. Ma and Y. Liu, *Compos. Part A Appl. Sci. Manuf.*, 2020, 136, 105957.
- 34 Z. Wang, X. Xia, M. Zhu, X. Zhang, R. Liu, J. Ren, J. Yang, M. Li, J. Jiang and Y. Liu, *Adv. Funct. Mater.*, 2022, **32**, 2108336.
- 35 G. Wang, J. Chen, W. Zheng and B. Shen, *Chem. Eng. J.*, 2024, **488**, 151052.

- 36 L.-C. Jia, X.-X. Jia, W.-J. Sun, Y.-P. Zhang, L. Xu, D.-X. Yan, H.-J. Su and Z.-M. Li, ACS Appl. Mater. Interfaces, 2020, 12, 53230–53238.
- H. Guo, Y. Shi, F. Pan, S. Zheng, X. Chai, Y. Yang, H. Jiang, X. Wang, L. Li, Z. Xiu, J. Wang and W. Lu, *Nano Energy*, 2023, 114, 108678.
- 38 P. Zhang, X. Ding, Y. Wang, M. Shu, Y. Gong, K. Zheng, X. Tian and X. Zhang, ACS Appl. Polym. Mater., 2019, 1, 2006–2014.
- S. Y. Liao, X. Y. Wang, X. M. Li, Y. J. Wan, T. Zhao, Y. G. Hu, P. L. Zhu, R. Sun and C.
 P. Wong, *Chem. Eng. J.*, 2021, **422**, 129962.
- 40 Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu, Y. Hu, R. Sun and C. P. Wong, *Nano-Micro Lett.*, 2022, **14**, 1–15.
- J. Dong, X. Tang, Y. Peng, C. Fan, L. Li, C. Zhang, F. Lai, G. He, P. Ma, Z. Wang, Q.
 Wei, X. P. Yan, H. L. Qian, Y. Huang and T. Liu, *Nano Energy*, 2023, 108, 108194.
- 42 J. Gao, J. Ye, S. Chen, J. Gong, Q. Wang and J. Liu, ACS Appl. Mater. Interfaces, 2021, 13, 17093–17103.
- 43 L. Jia, K. Ding, R. Ma, H. Wang, W. Sun, D. Yan, B. Li and Z. Li, *Adv. Mater. Technol.*, 2019, 4, 1800503.
- K. Huang, M. Chen, G. He, X. Hu, W. He, X. Zhou, Y. Huang and Z. Liu, *Carbon*, 2020, 157, 466–477.
- 45 D. Feng, D. Xu, Q. Wang and P. Liu, J. Mater. Chem. C, 2019, 7, 7938–7946.
- Z. Wang, W. Yang, R. Liu, X. Zhang, H. Nie and Y. Liu, *Compos. Sci. Technol.*, 2021, 206, 108652.
- 47 W. Yuan, J. Yang, F. Yin, Y. Li and Y. Yuan, *Compos. Commun.*, 2020, **19**, 90–98.
- J. Dong, S. Luo, S. Ning, G. Yang, D. Pan, Y. Ji, Y. Feng, F. Su and C. Liu, ACS Appl.
 Mater. Interfaces, 2021, 13, 60478–60488.