Electronic Supplementary Information

Mixed anion control of enhanced negative thermal expansion in the oxysulfide of PbTiO₃

Zhao Pan^{1,2,*}, Zhengli Liang³, Xiao Wang¹, Yue-Wen Fang^{4,5,*} Xubin Ye¹, Zhehong Liu¹, Takumi Nishikubo^{6,2}, Yuki Sakai^{6,2}, Xi Shen¹, Qiumin Liu², Shogo Kawaguchi⁷, Fei Zhan⁸, Longlong Fan⁸, Yong-Yang Wang⁸, Chen-Yan Ma⁸, Xingxing Jiang³, Zheshuai Lin³, Richeng Yu¹, Xianran Xing^{9,*}, Masaki Azuma^{2,6} & Youwen Long^{1,10,*}

¹Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

²Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8503, Japan

³Center for Crystal R&D, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

⁴Fisika Aplikatua Saila, Gipuzkoako Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Europa Plaza 1, 20018 Donostia/San Sebastian, Spain

⁵Centro de F'ısica de Materiales (CSIC-UPV/EHU), Manuel de Lardizabal Pasealekua 5, 20018 Donostia/San Sebasti'an, Spain

⁶Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan

⁷Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyōgo 679-5198, Japan

⁸Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

⁹Beijing Advanced Innovation Center for Materials Genome Engineering and Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

¹⁰Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

Corresponding author: <u>zhaopan@iphy.ac.cn</u>; <u>yuewen.fang@ehu.eus</u>; <u>xing@ustb.edu.cn</u>; <u>ywlong@iphy.ac.cn</u>

Supplementary Figures and Tables

Fig. S1 Microstructural analysis. The elemental distribution of the PTOS1 sample.

Fig. S2 XANES analysis. XANES spectra at the S-*K* edges of the PTOS2 compound. The XANES of PbS and S are shown for comparison.

Fig. S3 Synchrotron X-ray diffraction refinement. Rietveld refinement of the SXRD pattern of tetragonal PTOS1 at room temperature. Observed (red, solid circles), calculated (black line), and their difference profiles (bottom line) are shown. The Bragg reflection positions are indicated by the green ticks ($\lambda = 0.42$ Å).

Fig. S4 Synchrotron X-ray diffraction refinement. Rietveld refinement of the SXRD pattern of tetragonal PTOS2 at room temperature. Observed (red, solid circles), calculated (black line), and their difference profiles (bottom line) are shown. The Bragg reflection positions are indicated by the green ticks ($\lambda = 0.42$ Å).

Fig. S5 The phonon dispersions and phonon density of states of the 40-atom PT supercell, indicating the dynamical stability.

without spin-orbit coupling (SOC). (b) Electronic structure of PT, PTOS1 and PTOS2 with SOC. The Fermi energy is set to zero. The legend is applicable to the density of states only.

of states. (b) LDA calculated band structure and density of states. The Fermi energy is set to zero. The legend is applicable to the density of states only.

Composition	Space group	Atom	Site	g	x	У	Ζ	$100 U_{\rm iso}({\rm \AA}^2)$
PTOS1 ^{a)}	P4mm	Pb	1a	1.000	0.000	0.000	0.000	0.900
		Ti	1b	1.000	0.500	0.500	0.539(5)	0.600
		O1	1b	0.997	0.500	0.500	0.098(10)	1.000
		S 1	1b	0.003	0.500	0.500	0.098(10)	1.000
		O2	2c	0.997	0.500	0.000	0.624(9)	1.000
		S2	2c	0.003	0.500	0.000	0.624(9)	1.000
PTOS2 ^{b)}	P4mm	Pb	la	1.000	0.000	0.000	0.000	0.900
		Ti	1b	1.000	0.500	0.500	0.538(9)	0.700
		O1	1b	0.993	0.500	0.500	0.085(10)	1.000
		S 1	1b	0.007	0.500	0.500	0.085(10)	1.000
		O2	2c	0.993	0.500	0.000	0.622(8)	1.000
		S2	2c	0.007	0.500	0.000	0.622(8)	1.000

 Table S1 The refined structural parameters for the PTOS1 and PTOS2 compounds at room temperature.

^{a)}Space group *P4mm*, *Z* =1, *a* = *b* = 3.9011(7) Å, *c* = 4.1553(2) Å, *V* = 63.2403(5) Å³, *R*-factor (%): $R_{wp} = 7.94, R_p = 6.51;$

^{b)}Space group *P4mm*, *Z*=1, *a* = *b* = 3.9012(1) Å, *c* = 4.1554(6) Å, *V* = 63.2437(7) Å³, *R*-factor (%): $R_{wp} = 9.25, R_p = 7.90.$