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S1. Parametrization and underlying bistable mechanism of the curved beam  

The proposed shape-describing function y(x) = -H/2 cos ((x/W)gπ),  x ϵ 0, W  is capable of 

describing variant beam shapes by tuning the shape coefficient g, as the curves in Fig. S1a for 

g = 1.2, 1.5, 2 (≥ 1), respectively. Moreover, a second series of beam shapes is gained by 

introducing the operator ℛ:g, which indicates that the beam shape of the value g can be 

reckoned as a symmetric reflection of the beam shape of the same value g along both the X-

axis and Y-axis. Fig. S1b shows the snapping force Fmax and the trough force Fmin of the 

proposed parameterized beams during loading evaluated by numerical simulation. The beams 

with g and ℛ:g ranging from 1 to 2 exhibit a transition from bistability to monostability. 

Compared to the force-displacement curve of Beam 1 with g = 1[1,2], the force-displacement 

curve of Beam 2 with g = 2 possesses a smaller value of Fmax and a positive value of Fmin with 

an overall smoother loading trend. Notably, the beam’s geometry is determined by varying 

values of g and further changes the stiffness distribution of beams (Fig. S2). When the stiffness 

of the loading end is smaller than the stiffness of the fixed end, e.g., g = 1, the beam near the 

loading end deforms first (strain = 0.1), thus forming a wave peak pattern; while when the 

stiffness of the loading end is larger than the stiffness of the fixed end, e.g., g = 2, the beam at 

the fixed end deforms first, thus forming a wave trough pattern. It is noted that the beams with 

g ≥ 1.2 all exhibit a wave trough pattern during loading, which can be utilized to achieve multi-

stage state transition behaviors by incorporating contact block (CB) units beneath the beam as 

contact constraints. Here, we choose Beam 2 for the remaining investigation. 

 

Fig. S1. The parameterized curved beams. (a) The variant beam shapes by tuning the shape 

coefficient g and the operator ℛ:g. (b) The snapping force Fmax and the trough force Fmin of 

beams with different coefficients g during loading evaluated by numerical simulation. The 

trough force Fmin < 0 indicates that the beam is bistable.  
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Fig. S2. The comparison of beams with varying parameter g 

 

The unit cell with Beam 2 changes from monostability to bistability through the introduced 

contact constraints. Inspired by badminton storage, without any constraints, a badminton 

shuttlecock drops from the bucket due to gravity (Fig. S3a). The bucket, with a narrowed 

opening, functions as a clamp that alters the local deformation of the shuttlecock and secures it 

in place (Fig. S3b). We utilize the double trough deformation pattern of Beam 2 and through 

the introduction of CB units, the unit cell transitions into the other stable state. 

 

Fig. S3. The bistable mechanism of the assembled unit cell. (a) Monostability of the unit cell 

without CB. (b) Bistability of the unit cell with CB. 

 

S2. FDM manufacturing details and material property 

The samples were printed using an Ultimaker S5 3D printer (Ultimaker B.V., Utrecht, The 

Netherlands), adopting a dual material extrusion method layer by layer (Fig. S4a). PLA 

(Polymaker, China) was extruded through Nozzle 1, while TPU (Polymaker, China) was 

extruded through Nozzle 2. The TPU material has a density of ρ = 1230 kg/m3, a tensile strength 
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of 23.9 MPa, and exhibits typical elastic properties with Young’s modulus E = 11.7 MPa and 

Poisson’s ratio υ = 0.46. The diameter of the nozzles is 0.4 mm and the layer height is 0.1 mm 

in the Z direction. After adjusting the printing parameters, such as flow, line width, and print 

speed, the resolution of the printer in X/Y plane is empirically estimated to be 0.2 mm. PLA 

parts connecting the two ends of the TPU beam serve as a fixed structure. PLA parts above the 

TPU beam act as a force-transmitting structure during a uniaxial cyclic test (ZwickiLine Z0.5 

to Z5.0, ZwickRoell Pre. Ltd., Australia). The size of the unit cell is 47 mm × 60 mm with an 

out-of-plane thickness of 8 mm and more sizes of the PLA structure are shown in Fig. S4b.  

 

Fig. S4. (a) 3D printer for printing samples. (b) Geometrical details of printed samples. 

The material properties of the TPU were further experimentally characterized and utilized as 

inputs for numerical simulation. A strip (1.3 mm × 8 mm × 30 mm) was printed and tested under 

a uniaxial tensile test at a loading rate of 0.1 mm/s. The tensile results indicate a nonlinear 

stress-strain relationship under large deformation (Fig. S5a) and a Mooney-Rivlin model is used 

to describe the TPU stress-strain behavior and the form of strain energy density E with two 

parameters is applied[3]: 

E = C10 I1-1 +C01 I2-1 +
1

D1
(J-1)2, (S1) 

where I1 and I2 are the first and second deviatoric strain invariants; J is the determinant of the 

deformation gradient tensor; C10  and C01  are material parameters obtained by fitting the 

experimental strain-stress curve; D1 is the temperature dependent material parameter. As the 

parameters C10 = -0.54516, C01 = 6.04727, D1 = 0.001, the fitted stress-strain curve matches 

the experimental data well. Additionally, Young’s modulus of the used TPU is measured at 5.7 

MPa. 

A uniaxial cyclic test was conducted on the unit cell with Beam 1. As shown in Fig. S5b, the 

unit cell exhibits a larger loading force during the initial loading stage. This can be mainly 
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attributed to two reasons: material initialization and viscoelasticity of TPU materials[4]. Firstly, 

the TPU material is in its pristine state, requiring significant energy to overcome initial 

resistance to deformation as the internal molecular chains, segments, and microstructural 

components rearrange to accommodate the applied load. This change can not recover rapidly, 

leading to lower stiffness and load-carrying capacity in subsequent cycle tests. Secondly, the 

viscoelasticity of TPU material exhibits stress relaxation, where stress decreases over time 

under constant strain. During the first loading, high initial stress is generated, but over time, 

this stress relaxes due to internal molecular motions that dissipate energy. As the material 

undergoes subsequent loading cycles, the already relaxed state means less force is required to 

achieve the same deformation. Subsequent stages of cyclic testing reveal consistent stress-strain 

curves during loading and unloading processes. In this study, we focus on the performance of 

the structure under the first loading and unloading phases.  

 

Fig. S5. (a) Experimental and fitting stress-strain curve comparison for the TPU strip. (b) The 

stress-strain curve and stable states for Beam 1 under a uniaxial cyclic test. 

 

S3. Numerical simulation of the 2D unit cell and the region of interest for CB 

In this work, commercial finite element software ABAQUS was used to model and simulate 

the deformation process of the designed structure. The deformation process is considered quasi-

static due to the low loading rate, and thus viscoelastic behavior is disregarded. The geometry 

nonlinearity effect is enabled and an automatic stabilization by a dissipated energy fraction of 

0.0001 and a maximum ratio of 0.01 to strain energy is used to stabilize the solver. The 

boundary condition of the unit cell is depicted in Fig. S6a. The PLA material is modeled as a 

high-modulus isotropic material ‘rigid’. The lower part of the PLA material is set as encastred, 

while a displacement load of 24 mm is applied to the upper part of the PLA material. The 

interfaces between TPU and PLA are set as a rigid body constraint, which results in the TPU 

beam being fixed at both ends and loaded at the top. Since the TPU beam makes contact with 
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CB during the deformation process, surface-to-surface self-contacts based on the penalty 

method are defined by assuming the friction coefficient as 0.6[5]. The C3D8RH element which 

is a hybrid formulation element is assigned to the TPU beam to keep consistent with the 

incompressible material model while the C3D8R element is assigned to all other parts (PLA). 

The discretized mesh model is shown in Fig. S6b, and the beam body and CB part where the 

contact probably exists are locally refined to ensure the simulation accuracy and convergence. 

 

Fig. S6. (a) The boundary condition and (b) the discretized mesh model of the 2D unit cell.  

 

We determined the region of interest for CB to efficiently explore the CB effect on the state 

transition behavior of the assembled unit cell. Since the point at the bottom of the beam initially 

contacts CB, we got a series of bottom points of the beam through numerical simulation in Fig. 

S7. During the entire deformation process, the bottom points of the beam exhibit space 

concentration as strain (d/2H) varies from 0.13 to 0.79. Consequently, we identified the area 

highlighted by a red box as the region of interest for CB, wherein CB spans a range of w/W 

from 0.33 to 0.67 and h/H from 0.13 to 0.79. Beyond this region, at small w and small h, CB 

has a limited effect on the transition behavior. Conversely, at large w and small h, where CB is 

close to the loading end, the beam is more susceptible to damage. Additionally, the regularity 

of transition behavior outside the region of interest for CB is compromised. 
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Fig. S7. Region of interest for CB determined by the bottom point of the beam during loading. 

 

S4. Analysis of the slip phenomenon 

As mentioned in the paper, the assembled unit cell shows a steep increase in the force value 

with an increment of displacement during the 2nd-stage deformation. It is worth noting that the 

beam slips at some CB positions during loading (Fig. S8a), reflecting as a force rebound on the 

transition behavior. After contacting CB, the beam first slides on the CB platform (2nd-stage-i) 

and then relies on the contact fulcrum to rotate and stretch (2nd-stage-ii). A distinct area marked 

by a red ellipse can be observed on the stress-strain curve. The slip phenomenon prevents the 

local excessive deformation of the beam while maintaining the level of stress values. Thus, the 

energy absorption of the unit cell is improved. 

To better understand the mechanism of the slip behavior, when Beam 2 makes contact with 

CB, we classify the cases into three based on the relative position of the contact point between 

Beam 2 and CB and the bottom point of Beam 2 (Fig. S8b). In Case 1, exemplified by CB 

positioned at 0.33_0.13, the contact point lies to the left of the bottom point of Beam 2, leading 

to a scenario where no slip occurs. In Case 2, the contact point coincides with the bottom point 

of Beam 2. In this case, a coefficient fs is introduced to explain whether a slip occurs. The 

dashed red lines (assuming a rigid rod) connect the contact point and the loading end, 

simplifying the force transmission path of the beam in the 2nd -stage deformation. The 

inclination γ governs the magnitude of the force components (the shear force Fh, the vertical 

force Fv) at the point of contact. Force analysis of the contact point on CB, we get: 

Fv = Frodsin(γ),
Fh = Frodcos(γ),

 (S2) 

where Frod is the force transmitted by the rigid rod: 

Frod = Floadsin(γ). (S3) 

Considering the friction coefficient 𝜇 on the contact surface, the coefficient fs is defined as: 
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fs = 
μFv

Fh
 = μtan(γ). (S4) 

When the coefficient fs < 1, the slip phenomenon occurs, exemplified by the CB position at 

0.6_0.63. Case 3 (the contact point is to the right of the bottom point of Beam 2) is similar to 

Case 2, where the contact point is on the upper left point of CB. Due to a small γ, the slip 

phenomenon commonly occurs in this case. However, since CB is close to the loading end, 

Case 3 tends to cause beam damage during mechanical tests, which falls outside the region of 

interest for CB in the subsequent study. 

 

Fig. S8. Analysis of the slip phenomenon. (a) Experiment and numerical simulation of the unit 

cell with slip phenomenon. (b) Three cases classified by the relative position of the contact 

point between Beam 2 and CB and the bottom point of Beam 2, when Beam 2 makes contact 

with CB.  

 

S5. Spring model for Single-CB design 

As shown in Fig. S9, the deformation of the unit cell during a uniaxial cyclic test is 

represented by the compressive ( Ks ) and torsional ( Kr ) springs[6]. During loading, the 
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deformation process of the beam can be divided into two stages. Before Beam 2 makes contact 

with CB, the switch S1 is off while the switch S2 is on, the compressive spring Ks1 and the 

torsional spring Kr1 transfer loads, reckoned as the 1st-stage deformation. When Beam 2 makes 

contact with CB, the switches S1, S2 both reverse their states, thus Ks2 and Kr2 are activated to 

transfer loads, reckoned as the 2nd-stage deformation. The geometrical parameters W1 (W2), H1 

(H2) are the equivalent width and height of the 1st-stage (2nd-stage) deformation respectively. 

 

Fig. S9. The two stages of the proposed Single-CB spring model. 

 

The total potential energy Es of the whole system consists of the elastic strain energy (the 

stretching energy indicated by compression of Ks  and the bending energy indicated by the 

rotation of Kr and the energy caused by the external force). Depending on whether the beam is 

in contact with the CB or not, Es is a piecewise function, expressed as:  

Es = 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧Ks1 H1

2+W1
2- H1-u 2+W1

2
2

+Kr1 α1-arctan
H1-u

W1

2

Floadu,

0 < u ≤ ∆1

Ks1 H1
2+W1

2- H1-∆1
2+W1

2
2

+Kr1 α1-arctan
H1-∆1

W1

2

Ks2 H2
2+W2

2- H2- u-∆1+δ
2
+W2

2

2

Kr2 α2-arctan
H2- u-∆1+δ

W2

2

Tcrs-Floadu.

∆1 < u ≤ 2H

 

 (S5) 

Beam 2 undergoes the 1st-stage deformation when 0 < u  ∆1 , and within the range 

∆1 < u  2H, Beam 2 is in the 2nd-stage deformation after contacting CB, where the total 

displacement process of the beam is constant 2H = 24 mm. The term Tcrs  is added to 

numerically supplement the energy of the slip condition. By utilizing the stationary condition 

of the total potential energy[7]: 
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∂Es

∂u
 = 0. (S6) 

The force (Fload)-displacement (u) relationship can be obtained: 

Fload = 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧2Ks1 H1

2+W1
2- H1-u 2+W1

2 H1-u

H1-u 2+W1
2

2W1Kr1

[α1-arctan
H1-u
W1

]

W1
2+(H1-u)2 ,

0 < u ≤ ∆1

2Ks2 H2
2+W2

2- H2- u-∆1+δ
2
+W2

2 H2- u-∆1+δ

H2- u-∆1+δ
2
+W2

2

2W2Kr2

[α2-arctan
H2- u-∆1+δ

W2
]

W2
2+[H2- u-∆1+δ ]2

∂Tcrs

∂u
.

∆1 < u ≤ 2H

 

 (S7) 

To ensure the continuity of the piecewise function Fload, δ is physically interpreted as the 

preload displacement to compensate for the initial value of the force Fload in the 2nd-stage 

deformation (otherwise Fload is 0 when u equals to ∆1), which is determined by Fload at the time 

of making contact with CB (u = ∆ in the 1st stage). 

The equivalent widths W1, W2 and heights H1, H2 of the beam are determined by the unit cell 

size. W1  is the total beam span, i.e., W1 = 15×2+6 = 36 mm  (The width 6 mm refers to the 

loading platform width in the middle of the beam) and H1 = 12 mm. According to the region of 

interest for CB, W2 range from 15 mm to 25 mm (W2 = W1-2w) and H2 ranges from 3 mm to 

10 mm. Moreover, Ks1, Ks2 and Kr1, Kr2 are respectively as: 

Ksi = 
EA

2Li
, Kri = χ u

EI

2Li
,   i = 1, 2 (S8) 

where A and I are the beam cross-section area and moment of inertia of the cross-section. It is 

worth emphasizing that since there is a noticeable angular change in the beam during loading 

and considering the variations in the transition behaviors of beams with different coefficients g, 

we empirically introduce χ(u)  to assist in adjusting the rotating spring stiffness at different 

displacements. The relationship that exists between the given parameters is： 
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A = tb,

I = 
t3b

12
,

Li
2 = Hi

2+Wi
2,

αi = arctan
Hi

Wi
,

∆1 = 2H-2H2,

 

  i = 1, 2 (S9) 

where t and b are beam thickness and out-of-plane thickness. 

The adjustment coefficient χ(u) of torsional spring stiffness is defined as: 

χ(u) = 
(p1+p2α(u))

α(u)+q1/Q(Hi, Wi)
,   i = 1, 2 (S10) 

where p1, p2, q1 are constant factors, depending on the model size and material properties. In 

this work, for Beam 2 during loading, p1 = -250, p2 = 800, q1 = 0.44 . α(u)  is the equivalent 

angular value, expressed as: 

 α(u) = 

⎩
⎨

⎧ arctan(
H1-u

W1
),

arctan(
H2-(u-∆1)

W2
).

 

0 < u ≤ ∆1 

(S11) 
  ∆1 < u ≤ 2H 

The function Q Hi, Wi  is defined as: 

Q(Hi, Wi) = 
Hi

Wi

Wr

Hr
,   i = 1, 2 (S12) 

where Wr, Hr are the equivalent reference length and width of the beam, here we give Hr = 7.5, 

Wr = 18.  

As a complementary term to the slip phenomenon, 
∂Tcrs

∂u
 is defined as: 

∂Tcrs

∂u
 = I W2 ≤ Α ×I

H2

2(W1-W2)2  ≤ B ξ W2, H2 e
-
( u-∆ -1.5W2tanα2)2

2W2tanα2 , (S13) 

where I(condition) is an indicator function, expressed as:  

 I condition  = 1, condition is true
0. condition is false

 (S14) 

As analyzed in Section S4, with a fixed friction coefficient μ, slip occurs as the inclination γ 

decreases resulting in the coefficient fs < 1. This condition is interpreted as W2 is smaller than 

the coefficient A, meanwhile H2 satisfies 
H2

2(W1-W2)2 is smaller than the coefficient B. 

In a uniaxial cyclic test of the unit cell, the energy cost (Eout) for the beam back to the initial 

state (reinitiation) can be reckoned as the inverse process of the 2nd-stage deformation during 

loading, the force (Funload)-displacement (u) relationship in this stage expressed as: 
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Funload = 

-Ratio[2W2Kr2

[α2-arctan
H2- u-∆1

W2
]

W2
2+[H2- u-Δ ]2

2Ks2 H2
2+W2

2- H2- u-∆1
2
+W2

2 H2- u-∆1

H2- u-∆1
2
+W2

2

].

 (S15) 

The coefficients p1, p2, q1 in Kr2 are modified during unloading. Furthermore, the contrast 

between the clamping force caused by CB and the restoring force of the beam itself in the 2nd-

stage deformation results in two different patterns (a wave peak or a wave trough ) during 

unloading, distinguished by the black dotted line in Fig. S9. 

Because of the difference caused by the two reinitiation modes, Ratio is introduced as the 

adjustment factor, defined as: 

 Ratio = 

1, Ftrough  ≤ Fboundary(W2, H2)
Fboundary

Ftrough
, Ftrough  > Fboundary(W2, H2)

 (S16) 

where Fboundary(W2, H2) is the clamping force caused by the CB structure. When the absolute 

value of restoring force of the beam itself (Ftrough) during unloading is smaller than Fboundary, 

the unloading pattern of the beam can be regarded as the inverse process of the loading period. 

Otherwise, a wave peak appears during unloading, and the transition behavior of the reinitiation 

is modified by the Ratio. From the energy cost for reinitiation (Eout) during unloading in Fig. 

S9, we can see the energy trapping is also several times higher than the classical cosine-shaped 

Beam 1 (Ein/WHb = 20 J/mm3) at large w and small h. 

 

Fig. S10. Phase diagrams for the energy cost for reinitiation per volume Eout/WHb of the spring 

model in the parameter space of Single-CB position (w, h). 
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S6. Experimental results for Single-CB design 

Fig. S11 shows the effect of w and h of Single-CB on the transition behaviors under a uniaxial 

cyclic test. From the stress-strain curves of different w in Fig. S11a-c, an increase of w leads to 

a greater Fmax and a smaller Fmin (negative value). Meanwhile, Fmax and Fmin each appear at 

almost the same strain. From the stress-strain curves of different h in Fig. S11d-f, we conclude 

that as h increases, Fmax and Fmin appear at greater strains with nearly the same force values. 

The proposed spring model provides a good explanation for these phenomena. As discussed in 

Fig. 2c, the equivalent stiffness, Ks and Kr, are positively correlated with w and 1/h. Specifically, 

when the angle α1 is small, Ks and Kr are dominantly affected by w. Thus, an increase in w 

significantly increases Fmax, whereas an increase in h leads to a nearly constant Fmax. Besides, 

although w changes, the equivalent height H2 of the beam stays the same, Fmax appears in the 

same displacement process. This also explains that Fmax appears in a larger strain with an 

increase of h, i.e., the equivalent height H2 decreases.  

 

Fig. S11. Effect of Single-CB position (w, h) on the transition behaviors studied by experiments. 

(a) and (b) Stress-strain curves of Single-CB with different w/W during loading and unloading 

respectively (at fixed h/H: 0.29). (c) The snapping force per area Fmax/Wb and the trough force 

per area Fmin/Wb during loading and unloading. (d) and (e) Stress-strain curves of Single-CB 

with different h/H during loading and unloading respectively (at fixed w/W: 0.53). (f) The 
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snapping force per area Fmax/Wb and the trough force per area Fmin/Wb during loading and 

unloading. 

 

S7. Spring model and experimental results for Multi-CB (n = 2) design  

The spring model for Multi-CB is decoupled into multiple Single-CB conditions, and the 

beam transitions to the subsequent deformation stage upon making contact with each new CB. 

It is worth emphasizing that the deformation state of the beam after making contact with the 

preceding CB(s) informs the subsequent CB design. When n = 2, the deformation process 

undergoes three distinct stages. While the initial two stages align with the Single-CB scenario, 

the 3rd-stage deformation, subsequent to contacting the 2nd CB, is influenced by the deformation 

pattern that follows the contact with the 1st CB.  

As illustrated in Video S3, the 1st-stage and the 2nd-stage deformation for Multi-CB with n = 

2 (1st CB: 0.33_0.13, 2nd CB: 0.67_0.38) are consistent with the Single-CB (CB: 0.33_0.13). 

The initial deformation state in the 3rd-stage deformation for Multi-CB is the intermediate 

deformation state of the 2nd-stage deformation for the Single-CB case (CB: 0.67_0.38), shown 

in Fig. S11. This difference is reflected by a displacement difference ∆u in the spring model. 

Additionally, the initial angle α3  is smaller, while the equivalent compression and rotation 

stiffness remain the same (Ks3 = Ks2, Kr3 = Kr2 in Fig. S12). ∆u is related to both the 1st CB 

position and the 2nd CB position, i.e.:  

∆u = f(h, w, h', w'). (S17) 

In our study, we investigate the effect of the 2nd CB position of Multi-CB on the transition 

behaviors through a fixed 1st CB: 0.33_0.13. ∆u is expressed as: 

∆u = aijh
'iw'j

3

j = 0

3

i = 0
. (S18) 

The influence of the coupling between CBs on the transition behavior is quantified by ∆u. 

Consequently, the force (Fload )-displacement (u) relationship for the 3rd-stage deformation 

(∆2 < u ≤ 2H) are: 
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Fload = 

2Ks3 H3
2+W3

2- H3- u+∆u-∆2+δ
2
+W3

2 H3- u+∆u-∆2+δ

H3- u+∆u-∆2+δ
2
+W3

2

+2W3Kr3

[α3-arctan
H3- u+∆u-∆2+δ

W3
]

W3
2+[H3- u+∆u-∆2+δ ]2 ,

 (S19) 

where H3, W3, Ks3, Kr3 can be obtained through the Single-CB case ( CB positioned at the 2nd 

CB position of Multi-CB).  

 

Fig. S12. Comparison of spring model and deformation patterns for (a) Multi-CB (n = 2) case 

and (b) Single-CB case. 

 

Depending on the 2nd CB position, the transition behaviors manifest in two distinct cases, as 

illustrated in Fig. S13. Specifically, in the case of the 2nd CB positioned at 0.53_0.54, the 

snapping force per area Fmax/Wb appears in the 2nd-stage deformation, which is determined by 

the 1st CB position. Conversely, when the beam makes contact with the 2nd CB positioned at 

0.53_0.21, the snapping force per area Fmax/Wb appears in the 3rd-stage deformation (after 

contacting the 2nd CB) and it is further modulated by the 2nd CB position. This case exhibits 

multiplateau behavior, which is expected to develop hierarchical mechanical performances.  
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Fig. S13. The stress-strain curves of the 2nd CB positioned at 0.53_0.21 and 0.53_0.54. The 

snapping force per area Fmax/Wb occurs in the 3rd-stage deformation for the former, exhibiting 

multipateau behavior. 

 

S8. Spring model and experimental results for Sloped-CB design 

As shown in Fig. S14, the spring model for Sloped-CB is divided into three stages. Compared 

to Single-CB case, an additional 2nd-stage deformation is introduced, in which the fulcrum on 

CB for beam deformation is adjusted. We need to clarify that this stage is partially present under 

Single-CB conditions, as exemplified in Case 2 of the slip phenomenon in Section S4. In this 

scenario, the contact point between Beam 2 and CB is on the CB platform and the subsequent 

2nd-stage deformation of the beam conducts upon the top-right vertex of CB, which means the 

fulcrum is adjusted. Nevertheless, given the rapid transformation of this stage in Single-CB 

conditions, its inclusion in Single-CB analysis is considered unnecessary. Conversely, this stage 

exerts a notable influence on the transition behavior in Sloped-CB conditions. 

 

Fig. S14. Spring model and deformation patterns for Sloped-CB case. 

 

The deformation pattern of the beam in contact with CB is influenced by the position of CB, 

as well as the inclination and width of Sloped-CB. The force ( Fload )-displacement ( u ) 

relationship at this stage can be expressed as: 



  

18 

 

Fload = g(h, w, θ, p, u). (S20) 

Within the spring model, we simplify the fulcrum adjustment, i.e., the 2nd-stage deformation 

by treating it as a deformation stage based on a fixed equivalent fulcrum. Thus, compared to 

Equation (S7), the force (Fload)-displacement (u) relationship after making contact with CB 

(∆1 < u ≤ 2H) modifies as: 

 Fload = 
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 (S21) 

where ∆1-s is the displacement at the end of the fulcrum adjustment stage.  

In our study, we investigated the effect of the inclination 𝜃 and the width p of Sloped-CB on 

the transition behaviors through several fixed CB positions. As shown in Fig.s 2f,g, the fixed 

CB position is 0.33_0.13 (θ = 0), an increase in θ for CB correlates with a reduction in stiffness 

ks and Fmax after making contact with CB. The equivalent width W1-s and height H1-s in the 2nd-

stage deformation are defined as: 

W1-s = 32+2p( sin θ -1), (S22) 

H1-s = 10-
p

2
tan(θ). (S23) 

W1-s is positively correlated with 1/p and sin θ , and when θ is small, the change of p has a 

more significant influence on W1-s. The coefficient χ' u  to assist in adjusting the rotating spring 

stiffness Kr1-s are determined by: 

χ' u  = ksin(a1θ+a2)sin(b1α(u-∆1)+b2). (S24) 

With an increase in θ, the impact of contact constraints imposed by CB on the transition 

behavior becomes progressively weak, as evidenced in Video S4 and Fig. S15, consistent with 

an increase in W1-s during the 2nd-stage deformation. 
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Fig. S15. Effect of CB shape at different positions on the transition behavior. (a) CB: 0.47_0.29. 

(b) CB: 0.6_0.46. 

 

S9. Deformation patterns and transition behaviors of 2D array multistable metamaterials  

Compared with the snapping forces controlled by the thickness of the classical metamaterial, 

the assembled metamaterial tunes snapping forces by CB units. Because of the CB effect, a 

quasi-zero stiffness zone occurs in the transition behaviors shown in Fig. S16a. The transition 

behaviors of the unit cells that make up the assembled metamaterial are shown in Fig. S16b. 

Theoretically, the upper boundary Fu is 3Frm (Frm is the maximum force for unit cell in 1st-stage 

deformation), while the lower boundary Fl is 3min{Fr1, Fr2, Fr3} (Fr1, Fr2, and Fr3 are forces for 

three rows of unit cell contacting CB respectively). Due to the smooth transition behavior of 

Beam 2 in the early deformation stage, Fu and Fl are numerically close, which results in the 

quasi-zero stiffness zone. The length of this zone denoted as dz, can be approximately 

considered as the cumulative displacement of three rows of unit cells that come into contact 

with CB. When starting from different initial states, such as State 2-II and 2-III, the assembled 

metamaterial exhibits the quasi-zero stiffness zone of different lengths, as shown in Fig. S17. 

 

Fig. S16. The transition behaviors of (a) the assembled metamaterial and (b) the unit cells 

constituting the assembled metamaterial.  
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Fig. S17. Deformation configurations and transition behaviors of different stable-state 

transitions during loading. 

 

As shown in Fig. S18, the assembled metamaterial exhibits consistent deformation 

configurations with the classical metamaterial during unloading. Meanwhile, the trough forces 

Fmin are smaller than the classical ones from the force-displacement curves, indicating the 

stability of the stable states is improved via the locking effect of CB. 

 

Fig. S18. Experimental deformation configurations and force-displacement curves for 

assembled metamaterial and classical metamaterial during unloading. 
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S10. Programmable multistability of the 3D unit cell 

The multistable properties of 3D unit cells are mainly investigated by two strategies: the 

presence or absence of CB (with a fixed position: 0.53_0.54) and the use of either an 

unperforated or perforated shell[8]. The shell is obtained by rotating the 2D beam 360 degrees 

around the central axis. Additionally, we also compared the shells derived from the beams with 

different values of g, i.e., g = 2 (Beam 2) and g = 1 (Beam 1) in Fig. S19.  

 

Fig. S19. Design strategies and details of the 3D shell to investigate multistable properties. 

 

We observed that the shell derived from Beam 1 only exhibits bistability. Similar to the 2D 

beam case, since the shell stiffness at the loading end is smaller than that at the fixed end, the 

loading end of the shell first deforms, leading to a configuration exhibiting central concave and 

peripheral convexity in the intermediate deformation process. This pattern does not result in 

structural local discontinuity, i.e., it does not introduce another stable state (Fig. S20). 

Additionally, the perforated shell design only reduces the force values and also does not 

introduce a new stable configuration.  
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Fig. S20. Transition behaviors and deformation states of the perforated/unperforated shell with 

Beam 1. 

 

Numerical simulation was conducted to visualize the transition behavior of the 3D unit cells, 

facilitating the CB design. The discretized mesh model is shown in Fig. S21. Because of the 

symmetric characteristics of the unit cell, to save computational time cost, 1/4 of the unit cell 

was used in the simulation. 

 

Fig. S21. The discretized mesh model of half of 3D unit cells. (a) The unperforated shell. (b) 

The perforated shell. 

 

The shell derived from Beam 2 increases the stable state number to three by introducing an 

intermediate stable state. This can be found in Sample III in Fig. 4b, besides the initial state, 

two stable states were observed at strain around 0.7 and 1 during loading (Fig. S22). The 

intermediate stable state, i.e., State 2 or State 4 of Sample III shown in Fig. 4d, can be attributed 

to two contributing factors. On the one hand, compared to the shell derived from Beam 1, the 

shell derived from Beam 2 exhibits a different shell curvature of the shell, leading to the shell 

stiffness at the loading end being much larger than that at the fixed end. This drastic change in 
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stiffness and curvature of the shell is more likely to exhibit structural local discontinuity of the 

shell (central convexity and peripheral concave) during a cyclic test. On the other hand, the 

shell is printed layer by layer, and the bonding strength between layers is relatively weak, 

tending to be self-locked through structural discontinuities. This intermediate stable state occurs 

when the force value is positive from the stress-strain curves. The overall deformation states of 

the numerical simulation during loading are consistent with the experiment. However, as the 

material properties employed in the simulation do not account for the influence of the material 

printing process, and in order to enhance computational convergence, the local discontinuity is 

mitigated, thus intermediate stable states are not observed in the simulation. 

 

Fig. S22. Deformation patterns and stress-strain curves for experiments and numerical 

simulation of the unperforated shell. 

 

The perforation strategy weakens the shell stiffness, resulting in a reduced force value (Fig. 

S23). In addition, a different deformation pattern caused by the perforation strategy further 

increases the stable state number to four, i.e., an additional intermediate stable motif (State 4 of 

Sample IV in Fig. 4d) appears at strain around 0.2 during unloading. This is because the position 

of the holes in the shell results in a more pronounced reduction of the shell stiffness at the fixed 

end than that at the loading end. Thus a diverse deformation pattern during unloading is 

introduced (the fixed end of the shell deforms first during unloading, while the loading end of 

the unperforated shell deforms first during unloading in Video S6, Supporting Information), 

leading to another structural self-locked state.  



  

24 

 

 

Fig. S23. Deformation patterns and stress-strain curves for experiments and numerical 

simulation of the perforated shell. 

 

S11. The design of unit cells with customized multiplateau behaviors 

Based on the progressive design process in Fig. 4, we obtained Integrated-CB-1 for the 

multiplateau behavior. By modifying the geometrical parameters, we can further yield 

customized multiplateau behavior via Integrated-CB, e.g., a smaller stress increment h1 

showing a better low-load protection characteristic via Integrated-CB-2. A comparison of the 

design steps of Integrated-CB-1 and Integrated-CB-2 is shown in Fig. S24. In Step 1, 

Integrated-CB-2 shares the same starting point as Integrated-CB-1. While Integrated-CB-2 with 

a smaller width p1 leads to a smaller stress increment h1. In the subsequent design steps, based 

on the new geometrical parameter p1 , Integrated-CB-2 is obtained by following the 

multiplateau design process. The specific parameters of both Integrated-CBs are illustrated in 

Fig. S24. Integrated-CB-2 shows quite different geometrical parameters from Integrated-CB-1, 

corroborating the correlation of each step of CB design.  

 

Fig. S24. A comparison of the progressive CB design details of customized multiplateau 

behaviors. 
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S12. The design of unit cells with linear stiffness and quasi-zero stiffness behaviors  

As shown in Fig. S25, the primary descriptors for modulating linear stiffness behavior 

involve maintaining consistent stiffness within three local intervals, thereby ensuring uniform 

slopes across the modulation range. Thus we adopt the design strategy of three Sloped-CBs 

combinations. The starting point (w, h) also positions at the bottom point of the shell when the 

strain is ε1, which is the same as the modulation of multiplateau behavior. In Step 1, the local 

stiffness within interval 1 is modulated to k by the inclination θ1 and further the width p1 of CB 

1 modulates the interval length L1. Similarly, in Steps 2 and 3, based on the inclinations θ2 and 

θ3 tunes the local stiffness, the widths L2 and L3 modulate the length of Intervals 2 and 3. The 

specific parameters of the designed Interated-CB are illustrated in Fig. S25. 

Here, it is imperative to note that an upper limit exists for the length of Intervals 1-3, which 

collectively constitute the modulation region. This limitation arises due to the influence of 

Sloped-CB inclination on the modulation of local stiffness, affecting only a constrained range 

of intervals. For example, the transition behavior induced by CB designed in Step 2 does not 

maintain a linear stiffness in Interval 3. Subsequently, this interval undergoes further 

modulation by the designed Sloped-CB 3 in Step 3. We conclude that a one-step Sloped-CB 

design demonstrates the capability to encompass a modulation interval of 0.1 strain length. 

Consequently, the integration of three Sloped-CBs effectively fulfills the modulation 

requirements, achieving an upper strain limit of 0.45. More precise modulation can also be 

achieved by dividing modulation interval into more subintervals, i.e., by using more 

combinations of Sloped-CBs.  

 

Fig. S25. The progressive CB design details and experimental stress-strain curves of linear 

stiffness behavior. 
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The quasi-zero stiffness behavior is expected to exhibit vibration isolation at diverse force 

values. Thereby, the primary descriptors include the force value and local stiffness modulation. 

The corresponding design strategy is the perforation strategy and Sloped-CBs combination in 

Fig. S26. With the perforation strategy, the force value reduces while the deformation patterns 

of the shell also change. Through the transition behavior of a perforated shell without CB, we 

determine the initial strain ε1 and the modulation of the quasi-zero stiffness is achieved by a 

two-step design. In addition to the quasi-zero stiffness exhibited by the collective interaction of 

arrayed unit cells in Section S9, here it is obtained through the beam-CB contact. 

 

Fig. S26. The progressive CB design details and experimental stress-strain curves of quasi-zero 

stiffness behavior. 

 

 

 

S13. Experimental details of plate-type digital materials with rapid reconfigurability for 

various application scenarios 

Based on the modulated function-oriented transition behaviors, i.e., multiplateau behavior, 

linear stiffness, and quasi-zero stiffness, we further employed an in-plane array of prescribed 

unit cells to construct plate-type digital materials in Fig. S27. The assembled metamaterial 

consisted of an array of 8 unit cells, distinguished by the feature of replaceable shells and CB 

plates. In our experimental setup, we incorporated four perforated shells and four unperforated 

shells. Through the substitution of the designed CB plates, the transition behavior of the digital 

material could swiftly transition from a tailored multiplateau to linear stiffness, enabling rapid 

adaptation to a variety of application scenarios. Moreover, multistability (snap-through 

behavior) endows digital materials with self-protective properties in the face of an overloading 

situation. 
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Fig. S27. Plate-type digital materials with rapid reconfigurability to accommodate different 

application scenarios via the replacement of CB plates. 
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