Supplementary Information

Nano-Enabled Dynamically Responsive Living Acellular Hydrogels

Roya Koshani,¹ Sina Kheirabadi,¹ Amir Sheikhi^{1,2,3,4,5*}

¹Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

²Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

³Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA

⁴Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA

16802, USA

⁵Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey,

PA 17033, USA

*Corresponding authors: sheikhi@psu.edu

The SI includes 6 Figures (S1-S6).

Fig. S1. DH-ALG synthesis and characterizations. (a) DH-ALG synthesis via successive periodate oxidation and Schiff base reaction, along with the corresponding changes in ALG chemical structure. Note that the chemical structures are just representatives of functionalization. (b) ¹H NMR spectra of ALG, DA-ALG, and DH-ALG, confirming the successful functionalization of ALG with aldehyde and hydrazide groups. (c) Aldehyde group content of DA-ALG, determined by the NaOH-titration of HCl released from the reaction of aldehyde groups with NH₂OH·HCl. (d) Conductometric titration curve of DH-ALG based on the titration of weak acid (i.e., carboxylate) using NaOH, yielding a carboxylate group content of 3.2 mmol g⁻¹.

Fig. S2. Representative aldehyde titration curve of DAMC, obtained via an oxime formation method.

Fig. S3. Effect of time on the storage modulus of NCH, containing varying concentrations of nLinker (a: 1.25 wt%, b: 1.75 wt%, c: 2 wt%, d: 2.25 wt%) and Ca^{2+} , at constant frequency = 1 rad s⁻¹ and strain = 0.1%. The tests were performed on gels ~ 5 min after preparation.

Fig. S4. Calculated LivGel pore size. Average pore size of LivGels, containing (a) varying nLinker concentration (Ca²⁺ concentration = 0 mM), or (b) varying nLinker concentrations at varying Ca²⁺ concentrations (0 - 36 mM), calculated using the storage modulus (*G'*) at constant strain = 1% and frequency = 1 rad s⁻¹. The pore size decreased by increasing the nLinker and/or Ca²⁺ concentrations. (n = 3, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Fig. S5. Differential modulus (*K'*) versus oscillatory shear stress for the NCH, containing 2.25 wt.% of nLinker loaded with varying Ca^{2+} concentrations. The Ca^{2+} -loaded NCH were not strain-stiffening.

Fig. S6. Oscillatory strain amplitude tests at alternating low (1%)-high (500%) strain cycles, conducted on the LivGels, containing (a) 1.25 wt.% of nLinker with 18 mM of Ca^{2+} , 1.75 wt.% of nLinker with (b) 0 mM of Ca^{2+} or (c) 18 mM of Ca^{2+} , or 2 wt.% of nLinker with (d) 0 mM of Ca^{2+} .