Supporting Information

Photothermally-activated suspending aerogel triggers biphase interface reaction for

high-efficiency and additive-free hydrogen generation

Qian Zhang,¹ Bo Jiang,¹ Yuming Gao,¹ Lin Li,^{1,*} Dawei Tang¹

¹School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and

Energy Conservation of Ministry of Education, Dalian University of Technology, 116024,

China

Experimental Methods

Preparation of the Pd/rGO aerogel

Firstly, Na₂PdCl₄ (0.02 M, 4.5 mL) was added into the GO aqueous solution (1.43 mg/mL, 35.0 mL) with magnetic stirring at room temperature for 2 h. Subsequently, 4.0 g of glucose was added to the homogeneous GO solution under vigorous stirring at room temperature to obtain a uniform solution mixture. After that, the mixture was dropped into a reaction still for hydrothermal reaction (1200 min, 120°C), forming a columniform gel with a diameter of 2 cm. Finally, the gel was washed several times with distilled water and reduced by immersion in a NaBH₄ (100.0 mM, 1.0 mL) solution for 12 h. After 6 h of freeze-drying treatment, Pd/rGO aerogel was fabricated. It is noted that the thickness of the aerogel can be controlled by regulating the amount of glucose.

Characterizations

X-ray diffraction patterns were obtained on a Rigaku Ultima IV diffractometer with Cu Kα radiation using a current of 100 mA and a voltage of 40 kV. Scanning electron microscopy images were obtained on a field-emission scanning electron microscope (TESCAN MIRA LMS) with an accelerating voltage of 5 kV. Transmission electron microscopy mapping images were obtained on a transmission electron microscope (Tecnai F30, FEI). Solar absorption spectra were collected using a UV-vis-NIR spectrophotometer (PE Lambda1050).

Pure FA dehydrogenation test

The aerogel was cut into a circle of 1.5 cm in diameter according to the size of the lab-scale nanoreactor (Figure 4a). In a typical reaction, the aerogel is arranged above the liquid FA level, and the gas gap is set as 10 mm. Before being irradiated by a solar simulator (71S0503A, Sofn, China), N₂ was passed through the nanoreactor to drain air. An optical power meter (S310C, Thorlabs, USA) was employed to ensure the optical density of simulated solar illumination (1 kW/m²). The generated gas product is first fed into a

2

condenser to wipe off the rest of the FA or water vapors. Then, the gas products were collected by gas bag and were determined by a gas chromatograph (Agilent 7890B).

Theoretical calculation

Calculations were conducted based on Density Functional Theory. The dispersion-corrected DFT-D3 schemes were employed to describe the possible Van der Waals interactions. The cut-off energy was set to be 400 eV, and the total energy convergence was set to be $<10^{-5}$ eV. According to the XRD and HRTEM characterization results, Pd (111) crystallographic planes that are easily exposed is evidenced as the main active sites. Thus, we modeled the Pd (111) surface as a 4×4 slab with four layers, where the top two layers were relaxed and the bottom two layers were kept fixed. Structures were considered converged when the maximum forces on all atoms were below 0.02 eV/Å. The Brillouin zone was sampled with a $3 \times 3 \times 1$ Monkhorst-Pack k-point mesh. The periodic images were separated by 10 Å of vacuum in the c-direction to avoid periodic interactions (Figure S10). For the liquid FA dehydrogenation, we constructed the HCOOH molecule with surrounding three H₂O molecules as adsorbates adsorbed on the Pd (111) surface (Figure S11). For the gaseous FA dehydrogenation, we constructed a bimolecular hydrogen-bonded complex model (HCOOH-HCOO*) as the adsorbate adsorbed on the Pd (111) surface (Figure S12). The atomic structures were analyzed via the VESTA code. The reaction energy barrier for each elementary reaction step is evaluated using the climbing image nudged elastic band (CINEB) method with four interpolated images between the initial and final states. The transition states (TS) were similarly optimized until the forces on all atoms were below 0.05 eV/Å and were confirmed using vibrational analysis by the presence of a single imaginary mode.

Equations

Equation S1. The calculation of thermal radiation flux of the aerogel at 70°C according to Planck's law.

$$\mu(\lambda,T) = \frac{8\pi hc}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

where h is Planck's constant, T is the thermodynamic temperature, and k is Boltzmann's constant.

Equation S2. The calculation of initial turnover frequency.

$$TOF = \frac{P_{atm}V_{H_2}/RT}{n_{\rm Pd}t}$$

where P_{atm} is the atmospheric pressure (101325 Pa), V_{gas} is the generated total hydrogen volume when the conversion reaches 20%, R is the universal gas content (8.314 m³ Pa mol⁻¹ K⁻¹), T is room temperature (298 K), and t is the reaction time when the conversion reaches 20%. n_{Pd} is the total mole number of Pd in the aerogel (0.0746 mg), which is obtained by the inductively coupled plasma-mass spectroscopy (ICP-MS) characterization of the aerogel. Equation S3. The calculation of liquid FA diffusion flux (N_l) according to Fick law.

$$N_l = D_l^T \frac{c_l^{sat}}{H}$$

where D_l^T is the diffusion coefficient (1.52×10⁻⁹ m²/s) of liquid FA at 298 K,^{31, 32} c_g^{sat} is the saturated liquid FA concentration, and H is the diffusion distance in the BTS. Equation S4. The calculation of gaseous FA diffusion flux (N_g) according to Fick law.

$$N_{\rm g} = D_{g}^{T} \frac{c_{g}^{sat}}{H}$$

where D_g^T is the diffusion coefficient at 316 K (1.20×10⁻⁵ m²/s),³³ c_g^{sat} is the saturated gaseous FA concentration, and H is the diffusion distance, which is also named as the gas gap in the SBS.

Equation S5. The calculation of hydrogen gas diffusion coefficient D_L in a liquid-phase environment.

$$D_L = 7.4 \times 10^{-8} \frac{T(M_{\rm FA})}{\mu_{\rm FA} V_{H_2}^{0.6}}^{0.5}$$

where T is the temperature (K), ψ_{FA} (=1.33) is the "association" parameter of FA that represents the degree of the aggregation of FA molecules,³⁴ M_{FA} and μ denote the molecular mass and viscosity of formic acid, respectively, and V_{H2} is the molar volume of hydrogen (cm³ mol⁻¹).

Equation S6. The calculation of hydrogen gas diffusion coefficient D_G in a gas-phase environment.³⁵

$$D_{\rm G} = \frac{1.86 \times 10^{-3} * T^{1.5} \sqrt{M_{H_2}^{-1} + M^{-1}}}{P^* \sigma^2 * \Omega}$$
$$\sigma = \frac{1}{2} \left(\sigma_{\rm H_2} + \sigma_{\rm FA} \right), \ \Omega = \frac{kT}{\sqrt{\varepsilon_{H_2} \varepsilon_{FA}}}$$
$$\varepsilon = 0.75 \text{k} T_c, \ \sigma = \frac{5}{6} \times 10^{-8} V_c^{1/3}$$

where *M* is the molar mass, *P* is the system pressure, σ is the average collision diameter, Ω is a temperature-dependent collision integral, and k is the Boltzmann constant. ε and σ are estimated using the well-known critical parameters for a given substance, where T_c and V_c are the critical temperature (K) and the critical molar volume (cm³/mol), respectively. Equation S7. The calculation of Gibbs free energy.

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S$$

where ΔE is the HCOOH adsorption energy, ΔE_{ZPE} is the difference in zero-point energy, *T* is reaction temperature, and ΔS is the difference in entropy between the adsorbed species and free species in the gas phase.

Figure S1. The TEM image of the Pd/rGO aerogel with highly dispersed Pd nanoparticles and the HRTEM image of Pd nanoparticles.

Figure S2. The experimental setup of the SBS.

Figure S3. The H₂ evolution volume and FA evaporation volume of the Pd/rGO aerogel under ultraviolet illumination.

Figure S4. The H₂ evolution volume of the Pd/rGO aerogel under the conditions of thermaldriven reaction and photothermal-driven reactions.

Figure S5. (a) Curve of the FA saturated vapor pressure with temperature, (b) Variation of temperature and pressure in the SBS.

Figure S6. The H_2 evolution rate of the SBS under different reaction temperatures.

Figure S7. The hydrogen evolution performance of the BTS in the presence of liquid basic additive (HCOONa).

Figure S8. H₂ and CO selectivity of the SBS.

Figure S9. The H_2 evolution rate of the SBS in five cycles.

Figure S10. The optimized computation model of Pd (111) surface and its atom coordinates.

Figure S11. The optimized computation model of HCOOH-H2O molecules adsorption and its

atom coordinates.

		X	У	Z	Dd38	0 33906	0 92351	0 10290
	Pd1	0.00620	0.00705	0.00052	Dd30	0.17266	0.52001	0.20634
	Pd2	0.33886	0.17356	0.10453	Pd40	0.00617	0.75733	0.31091
	Pd3	0.17339	0.33972	0.20895	Pd40	0.00017	0.75733	0.31091
	Pd4	0.00448	0.00579	0.31087	Pd41	0.23374	0.75675	0.399901
	Pd5	0.00609	0.25651	0.00061	P042	0.00925	0.92393	0.10321
	Pd6	0.33871	0.42299	0.10465	Pa43	0.42275	0.59129	0.20662
UCOOH UCOO adsorption on the Bd (111) surface	Pd7	0.17346	0.09198	0.20881	Pa44	0.25632	0.75758	0.31075
HCOOH-HCOO ausorption on the Fu (111) surface	Pd8	0.00456	0.25781	0.31104	Pa45	0.25591	0.50620	0.00059
	Pd9	0.25599	0.25672	0.00136	Pd46	0.08897	0.67342	0.10289
	Pd10	0.08919	0.42304	0.10334	Pd47	0.42271	0.84064	0.20625
	Pd11	0.42302	0.09038	0.20689	Pd48	0.25674	0.50978	0.31115
	Pd12	0.25743	0.25839	0.31794	Pd49	0.50546	0.50618	0.00064
	Pd13	0.25615	0.00687	0.00027	Pd50	0.83903	0.67342	0.10278
St	Pd14	0.08926	0.17349	0.10445	Pd51	0.67269	0.84049	0.20630
	Pd15	0.42103	0.33960	0.20911	Pd52	0.50845	0.50987	0.31125
	Pd16	0.25650	0.00577	0.31108	Pd53	0.50582	0.75653	0.99989
Y Y Y	Pd17	0.50565	0.00676	bit 0.00435 PdSD 949 0.10445 PdS1 960 0.20911 PdS2 577 0.31008 PdS3 676 0.99985 PdS4 315 0.10294 PdS5 051 0.20655 PdS6 758 0.31104 PdS7 642 0.00058 PdS8 326 0.10297 PdS8	Pd54	0.83894	0.92351	0.10288
	Pd18	0.83891	0.17315	0.10294	Pd55	0.67262	0.59035	0.20632
	Pd19	0.67235	0.34051	0.20655	Pd56	0.50653	0.75802	0.31107
	Pd20	0.50664	0.00758	0.31104	Pd57	0.75599	0.75654	0.99987
	Pd21	0.50561	0.25642	0.00058	Pd58	0.58890	0.92336	0.10273
	Pd22	0.83895	0.42326	0.10297	Pd59	0.92260	0.59046	0.20646
	Pd23	0.67267	0.09055	0.20631	Pd60	0.75624	0.75753	0.31093
	Pd24	0.50850	0.25798	0.31161	Pd61	0.75613	0.50655	0.99988
	Pd25	0.75585	0.25670	0.00010	Pd62	0.58888	0.67351	0.10303
- 0000	Pd26	0.58843	0.42303	0.10349	Pd63	0,92287	0.84081	0.20624
	Pd27	0.92214	0.09022	0.20672	Pd64	0.75661	0.50809	0.31125
	Paza	0.75630	0.25780	0.31097	01	0.19956	0.21137	0.41604
	Pd29	0.75590	0.00657	0.99986	02	0.35897	0.35821	0.48615
	Pasu	0.58883	0.1/320	0.10308	03	0.53663	0.53332	0.41129
	Pasi	0.92280	0.34036	0.20639	04	0.74096	0.73834	0.41021
	Pd32	0.75579	0.00742	0.31091	CI	0 24197	0.25114	0 46881
	Fd35	0.00000	0.50009	0.00002	C2	0.64140	0.63704	0 43642
	PU34 DASE	0.33901	0.0/354	0.10276	HI	0 42388	0 42035	0 45136
	Ed35	0.1/2/1	0.04009	0.20031	HO	0.17638	0 16216	0 50825
	Fd30	0.00621	0.30785	0.31102	112	0.1/030	0.15415	0.30023
	Pas /	0.00601	0./5660	0.99981	113	0.04353	0.03030	0.40/20

Figure S12. The optimized computation model of HCOOH-HCOO complexes adsorption and

its atom coordinates.

нсое	0 _b *	p-4		TS1	,	8	нсос) * 🏞	1	TS2	° 0-	<	H*+CO	9 0-10	<
		the a						ap	÷		000	~		0-0-0	-
	0	000	0	0	00	0	0	0 0	0	0	0 0	0	0	0 0	0
0000		0000			0000			0000			0000				
t. 0000		0	0	0000			0000			0000			0000		
	0000		0	0	0 0	0	0000			0000			0000		
Pdl	x 0.00621	¥ 0.00706	z 0.00052	x 0.00621	y 0.00706	z 0.00052	x 0.00621	y 0.00706	z 0.00052	x 0.00621	¥ 0.00706	z 0.00052	x 0.00621	y 0.00706	z 0.00052
Pd2 Pd3	0.33886	0.17356	0.10453	0.33886	0.17356 0.33972	0.10453	0.33886 0.17339	0.17356	0.10453 0.20895	0.33886 0.17339	0.17356 0.33972	0.10453 0.20895	0.33886	0.17356	0.10453
Pd4 Pd5	0.00448	0.00579	0.31087	0.00448	0.00579	0.31087	0.00448	0.00579	0.31087 0.00060	0.00448	0.00579	0.31087	0.00448	0.00579	0.31087
Pd6 Pd7	0.33871	0.42299	0.10465	0.33871	0.42299	0.10465	0.33871	0.42299	0.10465	0.33871	0.42299	0.10465	0.33871	0.42299	0.10465
Pd8	0.00456	0.25781	0.31104	0.00456	0.25781	0.31104	0.00456	0.25781	0.31104	0.00456	0.25781	0.31104	0.00456	0.25781	0.31104
Pd9 Pd10	0.25599	0.25672	0.10334	0.25599	0.25672	0.00136	0.25599	0.25672	0.00136	0.25599	0.25672	0.00136	0.25599	0.25672	0.10334
Pd11	0.42302	0.09038	0.20689	0.42302	0.09038	0.20689	0.42302	0.09038	0.20689	0.42302	0.09038	0.20689	0.42302	0.09038	0.20689
Pd12 Pd13	0.25743	0.25839	0.31794	0.25743	0.25839	0.31794	0.25743	0.25839	0.31794	0.25743	0.25839	0.31794	0.25743	0.25839	0.31794
Pd14	0.08926	0.17349	0.10445	0.08926	0.17349	0.10445	0.08926	0.17349	0.10445	0.08926	0.17349	0.10445	0.08926	0.17349	0.10445
Pd15 Pd16	0.42103	0.33960	0.20911 0.31108	0.42103	0.33960	0.20911 0.31108	0.42103	0.33960	0.20911 0.31108	0.42103	0.33960	0.20911 0.31108	0.42103	0.33960	0.20911
Pd17	0.50588	0.00669	0.99985	0.50582	0.00669	0.99990	0.50596	0.00673	0.99994	0.50585	0.00663	0.99991	0.50590	0.00670	0.99996
Pd18 Pd19	0.83891	0.17315	0.10294	0.83891	0.17315 0.34051	0.10294	0.83891 0.67235	0.17315	0.10294 0.20655	0.83891 0.67235	0.17315	0.10294	0.83891	0.17315	0.10294
Pd20	0.50664	0.00758	0.31104	0.50664	0.00758	0.31104	0.50664	0.00758	0.31104	0.50664	0.00758	0.31104	0.50664	0.00758	0.31104
Pd21 Pd22	0.83895	0.25642	0.10297	0.83895	0.42326	0.10297	0.50561	0.25642	0.00059	0.50561	0.25642	0.00059	0.83895	0.42326	0.10297
Pd23	0.67267	0.09055	0.20631	0.67267	0.09055	0.20631	0.67267	0.09055	0.20631	0.67267	0.09055	0.20631	0.67267	0.09055	0.20631
Pd24 Pd25	0.75585	0.25/98	0.00010	0.30850	0.25670	0.00010	0.50850	0.25/98	0.00010	0.50850	0.25798	0.00010	0.75585	0.25670	0.00010
Pd26	0.58843	0.42303	0.10349	0.58843	0.42303	0.10349	0.58843	0.42303	0.10349	0.58843	0.42303	0.10349	0.58843	0.42303	0.10349
Pd28	0.75630	0.25780	0.31097	0.75630	0.25780	0.31097	0.75630	0.25780	0.31097	0.75630	0.25780	0.31097	0.75630	0.25780	0.31097
Pd29	0.75605	0.00660	0.99983	0.75591	0.00667	0.99987	0.75607	0.00662	0.99985	0.75582	0.00669	0.99987	0.75573	0.00665	0.99987
Pd31	0.92280	0.34036	0.20639	0.92280	0.34036	0.20639	0.92280	0.34036	0.20639	0.92280	0.34036	0.20639	0.92280	0.34036	0.20639
Pd32	0.75579	0.00742	0.31091	0.75579	0.00742	0.31091	0.75579	0.00742	0.31091	0.75579	0.00742	0.31091	0.75579	0.00742	0.31091
Pd34	0.33901	0.67354	0.10276	0.33901	0.67354	0.10276	0.33901	0.67354	0.10276	0.33901	0.67354	0.10276	0.33901	0.67354	0.10276
Pd35	0.17271	0.84089	0.20631	0.17271 0.00621	0.84089	0.20631	0.17271	0.84089	0.20631	0.17271	0.84089	0.20631	0.17271	0.84089	0.20631
Pd37	0.00599	0.75658	0.99971	0.00567	0.75643	0.99979	0.00560	0.75643	0.99979	0.00568	0.75695	0.99992	0.00579	0.75662	0.99995
Pd38	0.33906	0.92351	0.10290	0.33906	0.92351	0.10290	0.33906	0.92351	0.10290	0.33906	0.92351	0.10290	0.33906	0.92351	0.10290
Pd40	0.00617	0.75733	0.31091	0.00617	0.75733	0.31091	0.00617	0.75733	0.31091	0.00617	0.75733	0.31091	0.00617	0.75733	0.31091
Pd41 Pd42	0.25586	0.75664	0.99980	0.25568	0.75656	0.99989	0.25584	0.75664	0.99988	0.25574	0.75659	0.99986	0.25572	0.75656	0.99987
Pd43	0.42275	0.59129	0.20662	0.42275	0.59129	0.20662	0.42275	0.59129	0.20662	0.42275	0.59129	0.20662	0.42275	0.59129	0.20662
Pd44 Pd45	0.25632	0.75758	0.31075	0.25632	0.50620	0.31075	0.25632	0.75758	0.31075	0.25632	0.75758	0.31075	0.25632	0.75758	0.31075
Pd46	0.08897	0.67342	0.10289	0.08897	0.67342	0.10289	0.08897	0.67342	0.10289	0.08897	0.67342	0.10289	0.08897	0.67342	0.10289
Pd47 Pd48	0.42271	0.84064	0.20625	0.42271 0.25674	0.50978	0.31115	0.42271	0.84064	0.20625	0.42271	0.84064	0.20625	0.42271 0.25674	0.84064	0.20625
Pd49	0.50546	0.50618	0.00064	0.50546	0.50618	0.00064	0.50546	0.50618	0.00064	0.50546	0.50618	0.00064	0.50546	0.50618	0.00064
Pd50 Pd51	0.83903	0.67342	0.10278	0.67269	0.84049	0.20630	0.83903	0.67342	0.10278	0.83903	0.67342	0.10278	0.63903	0.84049	0.10278
Pd52	0.50845	0.50987	0.31125	0.50845	0.50987	0.31125	0.50845	0.50987	0.31125	0.50845	0.50987	0.31125	0.50845	0.50987	0.31125
Pd53 Pd54	0.83894	0.92351	0.99987	0.83894	0.92351	0.10288	0.50590	0.75649	0.99992	0.50595	0.75649	0.99987	0.83894	0.75643	0.99990
Pd55	0.67262	0.59035	0.20632	0.67262	0.59035	0.20632	0.67262	0.59035	0.20632	0.67262	0.59035	0.20632	0.67262	0.59035	0.20632
Pd50 Pd57	0.50653	0.75652	0.00003	0.50653	0.75802	0.00003	0.50653	0.75802	0.31107	0.50653	0.75802	0.31107	0.50653	0.75652	0.00003
Pd58	0.58890	0.92336	0.10273	0.58890	0.92336	0.10273	0.58890	0.92336	0.10273	0.58890	0.92336	0.10273	0.58890	0.92336	0.10273
Pd60	0.75624	0.75753	0.31093	0.75624	0.75753	0.31093	0.92260	0.59046	0.20646	0.92260	0.59046	0.20646	0.75624	0.75753	0.31093
Pd61	0.75591	0.50641	0.00006	0.75591	0.50641	0.00006	0.75591	0.50641	0.00006	0.75591	0.50641	0.00006	0.75591	0.50641	0.00006
Pd63	0.92287	0.84081	0.20624	0.92287	0.84081	0.20624	0.92287	0.84081	0.20624	0.92287	0.84081	0.20624	0.92287	0.84081	0.20624
Pd64	0.75661	0.50809	0.31125	0.75661	0.50809	0.31125	0.75661	0.50809	0.31125	0.75661	0.50809	0.31125	0.75661	0.50809	0.31125
02	0.37873	0.39121	0.57974	0.40762	0.36402	0.60201	0.43124	0.37558	0.59489	0.42490	0.39582	0.57100	0.42997	0.40300	0.57551
03	0.71230	0.51490	0.46209	0.71092	0.51959	0.46187	0.69060	0.52539	0.46787	0.79050	0.62214	0.45396	0.76966	0.60501	0.45851
05	0.46520	0.49729	0.41384	0.45610	0.49950	0.44505	0.29894	0.29468	0.41028	0.28999	0.33097	0.47436	0.46984	0.53476	0.45605
H1	0.72075	0.56879	0.60427	0.75599	0.58859	0.60948	0.77698	0.59730	0.61510	0.76566	0.55515	0.60167	0.76610	0.56323	0.60303
H3	0.47879	0.42555	0.58757	0.51015	0.41422	0.59957	0.53336	0.41976	0.60748	0.52549	0.42828	0.53093	0.53015	0.43233	0.57833
H4	0.34320	0.41252	0.61629	0.38143	0.42611	0.58256	0.40991	0.40083	0.56787	0.37905	0.29496	0.58691	0.38113	0.30940	0.59197
H6	0.71196	0.43821	0.44024	0.70390	0.43175	0.45038	0.68555	0.43989	0.45386	0.81458	0.59185	0.44344	0.79853	0.57117	0.42309
H7 H8	0.59462	0.41960	0.34621	0.59142	0.42369	0.34699	0.59126	0.42467	0.34774	0.59099	0.42452	0.34789	0.58991	0.42392	0.34851
Cl	0.35957	0.39515	0.43840	0.33446	0.40989	0.43268	0.33323	0.41734	0.43146	0.37159	0.42832	0.47166	0.36778	0.42584	0.46019

Figure S13. The atom coordinates of computation models in the Figure 4e.

нсоо	*	13		TS3	po g		HCOO	x***		TS4	23	-to	H*+CO	000 0	
c	4	66	0	6	00	0		00	0 0	0000			0000		
†	0000		0000		0000			0000			0000				
· 🔶	0	0 0 0		0	0 0	0		0 0 0	0	0000		0000		0	
0 0 0 0		0000			0000			0000			0 0 0 0				
Pd1 Pd2 Pd3 Pd4	x 0.00620 0.33886 0.17339 0.00448	V 0.00705 0.17356 0.33972 0.00579	2 0.00052 0.10453 0.20895 0.31087	0.00620 0.33886 0.17339 0.00448	0.00706 0.17356 0.33972 0.00579	0.00052 0.10453 0.20895 0.31087									
Pd5 Pd6 Pd7 Pd8 Pd9	0.00609 0.33871 0.17346 0.00456 0.25599	0.25651 0.42299 0.09198 0.25781 0.25672	0.00061 0.10465 0.20881 0.31104 0.00136	0.00609 0.33871 0.17346 0.00456 0.25599	0.25651 0.42299 0.09198 0.25781 0.25672	0.00060 0.10465 0.20881 0.31104 0.00136	0.33871 0.17346 0.00456 0.25599	0.42299 0.09198 0.25781 0.25672	0.10465 0.20881 0.31104 0.00136	0.33871 0.17346 0.00456 0.25599	0.42299 0.09198 0.25781 0.25672	0.10465 0.20881 0.31104 0.00136	0.33871 0.17346 0.00456 0.25599	0.42299 0.09198 0.25781 0.25672	0.10465 0.20881 0.31104 0.00136
Pd10 Pd11 Pd12 Pd13	0.08919 0.42302 0.25743 0.25615	0.42304 0.09038 0.25839 0.00687	0.10334 0.20689 0.31794 0.00027	0.08919 0.42302 0.25743 0.25615	0.42304 0.09038 0.25839 0.00687	0.10334 0.20689 0.31794 0.00027	0.08919 0.42302 0.25743 0.25615 0.08926	0.42304 0.09038 0.25839 0.00687 0.17349	0.10334 0.20689 0.31794 0.00027 0.10445	0.08919 0.42302 0.25743 0.25615	0.42304 0.09038 0.25839 0.00687	0.10334 0.20689 0.31794 0.00027	0.08919 0.42302 0.25743 0.25615 0.08926	0.42304 0.09038 0.25839 0.00687 0.17346	0.10334 0.20689 0.31794 0.00027 0.10445
Pd14 Pd15 Pd16 Pd17 Pd18	0.08926 0.42103 0.25650 0.50565 0.83891	0.17349 0.33960 0.00577 0.00676 0.17315	0.10445 0.20911 0.31108 0.99985 0.10294	0.08926 0.42103 0.25650 0.50565 0.83891	0.17349 0.33960 0.00577 0.00669 0.17315	0.10445 0.20911 0.31108 0.99980 0.10294	0.42103 0.25650 0.50572 0.83891	0.33960 0.00577 0.00679 0.17315	0.20911 0.31108 0.99981 0.10294	0.42103 0.25650 0.50564 0.83891	0.33960 0.00577 0.00667 0.17315	0.20911 0.31108 0.99984 0.10294	0.42103 0.25650 0.50621 0.83891	0.33960 0.00577 0.00674 0.17315	0.20911 0.31108 -0.00007 0.10294
Pd19 Pd20 Pd21 Pd22	0.67235 0.50664 0.50561 0.83895	0.34051 0.00758 0.25642 0.42326	0.20655 0.31104 0.00058 0.10297	0.67235 0.50664 0.50561 0.83895	0.34051 0.00758 0.25642 0.42326	0.20655 0.31104 0.00058 0.10297	0.67235 0.50664 0.50561 0.83895 0.67267	0.34051 0.00758 0.25642 0.42326 0.09055	0.20655 0.31104 0.00058 0.10297 0.20631	0.67235 0.50664 0.50561 0.83895 0.67267	0.34051 0.00758 0.25642 0.42326	0.20655 0.31104 0.00058 0.10297	0.67235 0.50664 0.50561 0.83895 0.67267	0.34051 0.00758 0.25642 0.42326 0.09055	0.20655 0.31104 0.00058 0.10297 0.20631
Pd23 Pd24 Pd25 Pd26 Pd27	0.67267 0.50850 0.75585 0.58843 0.92214	0.09055 0.25798 0.25670 0.42303 0.09022	0.20631 0.31161 0.00010 0.10349 0.20672	0.67267 0.50850 0.75585 0.58843 0.92214	0.09055 0.25798 0.25670 0.42303 0.09022	0.20631 0.31161 0.00010 0.10349 0.20672	0.50850 0.75585 0.58843 0.92214	0.25798 0.25670 0.42303 0.09022	0.31161 0.00010 0.10349 0.20672	0.50850 0.75585 0.58843 0.92214	0.25798 0.25670 0.42303 0.09022	0.31161 0.00010 0.10349 0.20672	0.50850 0.75585 0.58843 0.92214	0.25798 0.25670 0.42303 0.09022	0.31161 0.00010 0.10349 0.20672
Pd28 Pd29 Pd30 Pd31 Pd32	0.75630 0.75590 0.58883 0.92280	0.25780 0.00657 0.17320 0.34036	0.31097 0.99986 0.10308 0.20639	0.75630 0.75588 0.58883 0.92280	0.25780 0.00672 0.17320 0.34036	0.31097 0.99987 0.10308 0.20639	0.75630 0.75601 0.58883 0.92280 0.75579	0.25780 0.00667 0.17320 0.34036 0.00742	0.31097 0.99984 0.10308 0.20639 0.31091	0.75630 0.75584 0.58883 0.92280 0.75579	0.25780 0.00661 0.17320 0.34036 0.00742	0.31097 0.99989 0.10308 0.20639 0.31091	0.75630 0.75587 0.58883 0.92280 0.75579	0.25780 0.00645 0.17320 0.34036 0.00742	0.31097 0.99990 0.10308 0.20639 0.31091
Pd33 Pd34 Pd35 Pd36	0.00585 0.33901 0.17271 0.00621	0.50669 0.67354 0.84089 0.50785	0.00002 0.10276 0.20631 0.31102												
Pd37 Pd38 Pd39 Pd40 Pd41	0.00601 0.33906 0.17266 0.00617 0.25574	0.75660 0.92351 0.59022 0.75733 0.75675	0.99981 0.10290 0.20634 0.31091 0.99981	0.00570 0.33906 0.17266 0.00617 0.25563	0.75640 0.92351 0.59022 0.75733 0.75658	0.99980 0.10290 0.20634 0.31091 0.99992	0.00578 0.33906 0.17266 0.00617 0.25587	0.75635 0.92351 0.59022 0.75733 0.75674	0.99978 0.10290 0.20634 0.31091 0.99987	0.00582 0.33906 0.17266 0.00617 0.25558	0.75648 0.92351 0.59022 0.75733 0.75669	0.99978 0.10290 0.20634 0.31091 0.99981	0.00575 0.33906 0.17266 0.00617 0.25581	0.75647 0.92351 0.59022 0.75733 0.75643	0.99984 0.10290 0.20634 0.31091 0.99986
Pd42 Pd43 Pd44 Pd45	0.08925 0.42275 0.25632 0.25591	0.92393 0.59129 0.75758 0.50620	0.10321 0.20662 0.31075 0.00059												
Pd46 Pd47 Pd48 Pd49 Pd50	0.08897 0.42271 0.25674 0.50546 0.83903	0.67342 0.84064 0.50978 0.50618 0.67342	0.10289 0.20625 0.31115 0.00064 0.10278	0.08897 0.42271 0.25674 0.50546 0.83903	0.67342 0.84064 0.50978 0.50618 0.67342	0.20625 0.31115 0.00064 0.10278									
Pd51 Pd52 Pd53 Pd54 Pd55	0.67269 0.50845 0.50582 0.83894	0.84049 0.50987 0.75653 0.92351	0.20630 0.31125 0.99989 0.10288	0.67269 0.50845 0.50570 0.83894	0.84049 0.50987 0.75639 0.92351	0.20630 0.31125 0.99985 0.10288	0.67269 0.50845 0.50582 0.83894	0.84049 0.50987 0.75651 0.92351	0.20630 0.31125 0.99989 0.10288	0.67269 0.50845 0.50570 0.83894	0.84049 0.50987 0.75645 0.92351	0.20630 0.31125 0.99988 0.10288	0.67269 0.50845 0.50590 0.83894	0.84049 0.50987 0.75650 0.92351	0.20630 0.31125 0.99989 0.10288
Pd56 Pd57 Pd58 Pd59	0.50653 0.75599 0.58890 0.92260	0.75802 0.75654 0.92336 0.59046	0.31107 0.99987 0.10273 0.20646	0.50653 0.75572 0.58890 0.92260	0.59035 0.75802 0.75649 0.92336 0.59046	0.20632 0.31107 0.99988 0.10273 0.20646	0.57262 0.50653 0.75592 0.58890 0.92260	0.59035 0.75802 0.75655 0.92336 0.59046	0.20632 0.31107 0.99986 0.10273 0.20646	0.50653 0.75574 0.58890 0.92260	0.59035 0.75802 0.75647 0.92336 0.59046	0.20632 0.31107 0.99989 0.10273 0.20646	0.50653 0.75606 0.58890 0.92260	0.39035 0.75802 0.75639 0.92336 0.59046	0.20632 0.31107 -0.00000 0.10273 0.20646
Pd60 Pd61 Pd62 Pd63 Pd63	0.75624 0.75613 0.58888 0.92287 0.75551	0.75753 0.50655 0.67351 0.84081	0.31093 0.99988 0.10303 0.20624 0.31125	0.75624 0.75595 0.58888 0.92287	0.75753 0.50647 0.67351 0.84081	0.31093 0.99997 0.10303 0.20624	0.75624 0.75582 0.58888 0.92287	0.75753 0.50641 0.67351 0.84081	0.31093 0.00003 0.10303 0.20624	0.75624 0.75582 0.58888 0.92287	0.75753 0.50641 0.67351 0.84081	0.31093 0.00003 0.10303 0.20624	0.75624 0.75582 0.58888 0.92287	0.75753 0.50641 0.67351 0.84081	0.31093 0.00003 0.10303 0.20624
01 02 03 04	0.19956 0.35897 0.53663 0.74096	0.35821 0.53332 0.73834	0.41604 0.48615 0.41129 0.41021	0.75661 0.31047 0.33246 0.51866 0.73248	0.50809 0.28636 0.40457 0.61165 0.74738	0.31125 0.41445 0.50127 0.44644 0.40727	0.75661 0.33487 0.33858 0.56286 0.72422	0.50809 0.32547 0.41021 0.62434 0.74004	0.31125 0.40744 0.50078 0.48263 0.41123	0.75661 0.31011 0.30160 0.56787 0.74118	0.50809 0.30294 0.39555 0.58791 0.74989	0.31125 0.41560 0.50599 0.48442 0.42302	0.75661 0.28813 0.24931 0.55268 0.75005	0.50809 0.27804 0.34439 0.54810 0.75934	0.31125 0.42054 0.51259 0.49093 0.46437
C1 C2 H1 H2 H3	0.24197 0.64140 0.42388 0.17638 0.64353	0.25114 0.63704 0.42035 0.19219 0.63630	0.46881 0.43642 0.45136 0.50825 0.48728	0.26690 0.63884 0.41920 0.16811 0.66920	0.29785 0.63559 0.48928 0.21448 0.55709	0.46555 0.43277 0.47795 0.48472 0.44523	0.27491 0.62584 0.46871 0.16188 0.59001	0.32946 0.62935 0.52304 0.25706 0.52841	0.45705 0.43241 0.49008 0.46194 0.40780	0.24376 0.63306 0.40469 0.13001 0.58020	0.31060 0.63985 0.46087 0.24569 0.56463	0.45974 0.43649 0.49779 0.46382 0.38896	0.20746 0.65135 0.35195 0.09339 0.58936	0.27570 0.65384 0.39876 0.21755 0.67520	0.45974 0.47725 0.51229 0.45595 0.34841

Figure S14. The atom coordinates of computation models in the Figure 4f.

Figure S15. Gibbs free energies of the SBS and the BTS at the same temperature of 343 K.

Ref.	FA	Additives	Solvents	Catalysts	TOF
	concentratio				
	n				
1	1 mol L ⁻¹	None	H ₂ O	NiPd/NH ₂ -N-rGO	954.3 h ⁻¹
	(wt. 4.6%)				
2	1 mol L ⁻¹	None	H ₂ O	PdAu/HPC-NH ₂	3763 h ⁻¹
	(wt. 4.6%)				
3	2 mol L ⁻¹	None	H ₂ O	DHBP-Ir	2800 h ⁻¹
	(wt. 9.2%)				
4	1 mol L ⁻¹	None	H ₂ O	PdCl ₂ Acet./Cdarco	$4888 \ h^{-1}$
	(wt. 4.6%)				
5	1 mol L ⁻¹	None	H ₂ O	CrPd/MIL-101-NH ₂	2009 h ⁻¹
	(wt. 4.6%)				
6	1 mol L ⁻¹	None	H ₂ O	AgPd/NH ₂ -SBA-15	1166 h ⁻¹
	(wt. 4.6%)				
Our	>21.3 mol	None	None	Pd/rGO aerogel	4672 h ⁻¹
work	L-1				
	(wt. >98%)				

Table S1. The comparison of reaction conditions between our work and other catalytic systems.

- J. M. Yan, S. J. Li, S. S. Yi, B. R. Wulan, W. T. Zheng and Q. Jiang, Adv Mater, 2018, 30, e1703038.
- 2. Z. Wang, S. Liang, X. Meng, S. Mao, X. Lian and Y. Wang, Applied Catalysis B: Environmental, 2021, 291.
- I. Mellone, F. Bertini, M. Peruzzini and L. Gonsalvi, Catalysis Science & Technology, 2016, 6, 6504-6512.
- J. L. Santos, C. Megías-Sayago, S. Ivanova, M. Á. Centeno and J. A. Odriozola, Chemical Engineering Journal, 2020.
- D. Gao, Z. Wang, C. Wang, L. Wang, Y. Chi, M. Wang, J. Zhang, C. Wu, Y. Gu, H. Wang and Z. Zhao, Chemical Engineering Journal, 2019, 361, 953-959.
- Y. Zhu, T. Nakanishi, K. Kanamori, K. Nakanishi, S. Ichii, K. Iwaida, Y. Masui, T. Kamei, T. Shimada, A. Kumamoto, Y. H. Ikuhara, M. Jeon, G. Hasegawa, M. Tafu, C. W. Yoon and T. Asefa, ACS Applied Materials & Interfaces, 2017, 9, 36-41.