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Supplementary Note 1. COMPARISON OF CALCULATED P3 STRUCTURE WITH

EXPERIMENTAL DATA

In this section, we present a detailed comparison between our calculated P3 structure

and experimental data. The calculated lattice parameters are in remarkable agreement with

the experimental data (Table S1).

TABLE S1: Comparison of lattice parameters of Pb9Cu(PO4)6O between theory and

experiment.

Reference a (Å) c (Å) Volume (Å3)

This work (DFT-PBE) 9.847 7.375 619.29

Expt. [1] (powder sample) 9.843 7.428 623.24

Expt. [2] (powder sample) 9.853 7.442 625.69

Expt. [2] (powder sample) 9.848 7.438 624.72

Expt. [2] (single crystal sample) 9.838 7.422 622.11

Expt. [2] (single crystal sample) 9.814 7.437 620.33

Expt. [2] (single crystal sample) 9.778 7.397 612.47

Expt. [2] (single crystal sample) 9.798 7.398 615.06

Additionally, we simulate X-ray diffraction pattern for the P3 structure, which also shows

excellent agreement with the experimental results (Fig. S1).

This work
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FIG. S1: Comparison of XRD patterns between theory and experiment. The experi-

mental data figure is taken from Ref. [3].
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Supplementary Note 2. COMPARISON OF ELECTRONIC STRUCTURES BE-

TWEEN DFT AND EDMFT

2.1. Metallic states
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FIG. S2: Comparison of metallic electronic structures obtained using DFT and

eDMFT calculations. a,b Nonmagnetic DFT band structure and paramagnetic eDMFT spec-

tral function for a the P3 structure and b the P1 structure. For the DFT calculations, the PBE

exchange-correlation functional is used and a nonmagnetic state is imposed. For the eDMFT cal-

culations, U = 3 eV and J = 1 eV are used at a temperature of 300K for the paramagnetic state.

Figure S2 compares the DFT and eDMFT electronic structures for metallic states. For the

P3 structure, both methods show two flat bands near the Fermi level (Fig. S2a). However,

there are notable differences between the eDMFT spectral function and the single-particle

DFT band structure. Specifically, the spectral function exhibits incoherent states near

the Fermi level, characterized by broadened spectral weight due to electron correlations.

This broadening causes certain coherent band states to appear below the Fermi level in

eDMFT, which do not exist in the corresponding energy range of the DFT band structure.

Additionally, eDMFT shows changes in other coherent bands with an overall bandwidth
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renormalization.

For the P1 structure, eDMFT reduces the energy gap between the single flat band and

its closest lower band, leading to the formation of highly incoherent states at the Fermi level

across the entire Brillouin zone (Fig. S2b). These incoherent states exhibit a pseudo-gap-like

density of states, which cannot be captured by DFT due to their highly correlated nature,

as discussed in the main text.

As a note of clarification, we only obtain a metallic DFT band structure by imposing a

non-magnetic state. The ground state corresponding to our DFT calculation is a ferromag-

netic insulator (see next section). Additionally, we note that depending on the choice of U

in a DFT+U context, we could also get a ferromagnetic metal as the ground state.

2.2. Insulating states

Figure S3 compares the DFT and eDMFT electronic structures for insulating states. To

obtain insulating states, we introduce a ferromagnetic ordering for the DFT calculations.

With our chosen Hubbard parameter of U = 3 eV, DFT yields Cu magnetic moments along

the z axis of 0.712 and 0.671µB per unit cell for the P3 and P1 structures, respectively.

Both methods appear to show overall agreement for both the P3 and P1 structures when

only comparing the band dispersions. However, a key difference between the two meth-

ods appears when considering the spin character: in DFT, both structures show a single

spin-polarized unoccupied narrow flat band and spin-polarized occupied bands, leading to

an overall ferromagnetic insulating state. By contrast, eDMFT shows non-spin-polarized

paramagnetic unoccupied and occupied bands.
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FIG. S3: Comparison of insulating electronic structures obtained using DFT and

eDMFT calculations. a,b Ferromagnetic DFT band structure and paramagnetic eDMFT spec-

tral function for a the P3 structure and b the P1 structure. For the DFT calculations, the

PBEsol [4] exchange-correlation functional with Hubbard U = 3 eV and spin-orbit coupling is used

for the ferromagnetic state, utilizing the vasp code [5, 6]. The spin-polarized DFT band structures

are projected onto the spin Sz component. For eDMFT calculations, U = 7 eV and J = 1 eV are

used at a temperature of 300K for the paramagnetic state.
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Supplementary Note 3. TEMPERATURE DEPENDENCE OF THE DENSITY OF

STATES

a bP3 structure (U=10 eV, J=1 eV) P1 structure (U=10 eV, J=1 eV)
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FIG. S4: Temperature dependence of the density of states (DOS) for insulating states.

a,b DOS of correlated copper d orbitals for the a P3 structure and b P1 structure as a function

of temperature. U = 10 eV and J = 1 eV are used. For comparison, the DOS of oxygen and lead

states are shown in shaded grey.

In the main text, we discuss the formation of a narrow unoccupied flat band within

the fundamental bulk gap as the P3 or P1 structures undergo a metal-insulator transition

with increasing U and/or decreasing J . We demonstrate that this narrow unoccupied band

in the insulating states remains positioned within the fundamental bulk gap despite wide

temperature variations ranging from 100K to 1900K for both structures (Fig. S4). As

temperature increases, the narrow unoccupied band blueshifts towards the conduction bulk

states, with a larger shift in the P3 structure compared to the P1 structure.
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Supplementary Note 4. FIRST MATSUBARA FREQUENCY RULE

In a Fermi liquid, the imaginary part of the self energy at the first Matsubara frequency,

ImΣ(iω0), exhibits a T -linear scaling behaviour at low temperatures, which is referred to as

the first Matsubara frequency rule [7]. This linear dependence arises because the self energy

of a Fermi liquid at low temperatures and frequencies takes the following form on the real

axis:

ReΣ(ω) = (1− Z−1)ω, ImΣ(ω, T ) = −C(ω2 + π2T 2), (1)

where Z is the quasiparticle renormalization factor and C is a coefficient. Under analytical

continuation to Matsubara frequencies iωn, the imaginary part of the self energy becomes

ImΣ(iωn, T ) = (1− Z−1)ωn + C(ω2
n − π2T 2). (2)

At the first Matsubara frequency ω0 = πT , the quadratic temperature term vanishes and

we obtain:

ImΣ(iω0, T ) = (1− Z−1)πT, (3)

leaving only the linear temperature term.

Figure S5 shows the imaginary part of the self energy at the first Matsubara frequency,

ImΣ(iω0), for metallic states in the P3 and P1 structures. For both structures, the values of

ImΣ(iω0) for non-correlated orbitals (black) exhibit perfect linear-T scaling behaviour even

at higher temperatures, consistent with their Fermi liquid nature. In contrast, the values of

ImΣ(iω0) for correlated orbitals for both structures (red), which are relevant for states near

the Fermi level, deviate significantly from linearity, violating the first Matsubara frequency

rule. This confirms the non-Fermi-liquid nature of the metallic states in both structures.
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FIG. S5: First Matsubara frequency rule. a,b The imaginary part of the self energy at the

first Matsubara frequency, ImΣ(iω0), for the non-Fermi-liquid states in a the P3 structure and

b the P1 structure. Red lines and symbols denote the average ImΣ(iω0) for correlated orbitals,

while black lines and symbols represent the corresponding average for non-correlated orbitals. Grey

dotted lines indicate linear fits of ImΣ(iω0) in the low-temperature regions for the non-correlated

orbitals. The values of ImΣ(iω0) for non-correlated orbitals exactly follow these linear fits even at

higher temperatures, whereas the trends for correlated orbitals deviate significantly from linearity.
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Supplementary Note 5. DETAILS ON THE SELF ENERGY

5.1. U and J dependence

a
P3 structure
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FIG. S6: Influences of Hubbard U and Hund’s coupling J on the self energy of corre-

lated copper d orbital states. a,b The imaginary part of the self energy on the imaginary axis,

ImΣ(iωn), at fixed U = 3 eV as a function of J for a the P3 structure and b the P1 structure. c,d

ImΣ(iωn) at fixed J = 1 eV as a function of U for c the P3 structure and d the P1 structure.

In the main text, we analyze the NFL states of both structures at U = 3 eV and J = 1 eV

in detail, assigning the NFL state in the P3 structure as a bad-metallic NFL and the

NFL state in the P1 structure as a pseudogap NFL based on their detailed low-frequency

behaviour of ImΣ(iωn), their electronic structures, and the temperature dependence of their

scattering rates. A crucial factor distinguishing these two NFL states is the slope A of

ImΣ(iωn) at low frequencies: the bad-metallic NFL shows a negative slope A < 0, whereas

the pseudogap NFL shows a positive slope A > 0.

To gain further insights into these NFL states, we investigate ImΣ(iωn) by varying J val-

ues at fixed U = 3 eV. As J decreases, the magnitude of ImΣ(iωn) increases for both struc-

tures, reflecting enhanced electron correlations due to the increased effective U (Figs. S6a,b).

Notably, in the P3 structure, the slope A changes sign as J decreases, indicating a tran-
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sition to a pseudogap NFL state. For J ≤ 0.6 eV, the behaviour of ImΣ(iωn) in the P3

structure becomes similar to that in the P1 structure, suggesting that the pseudogap NFL

state represents a more correlated NFL state. This implies that the two entangled energy

bands in the P3 structure result in a metallic state with reduced correlations at identical U

and J values.

We also examine the evolution of ImΣ(iωn) during the metal-insulator transition by

increasing U at fixed J = 1 eV (Figs. S6c,d). As U increases, the magnitude of ImΣ(iωn)

increases, leading to a transition from metallic states to insulating states for both structures.

As discussed in detail in the main text, at J = 1 eV, both structures are metallic NFL states

at U = 3 and 5 eV, and become charge-transfer Mott insulating states at larger U . For

the P3 structure, the metallic states maintain their bad-metallic NFL characteristics with

increasing U , since the slope remains the same even as it becomes an insulator. For the P1

structure, the metallic states also maintain their NFL characteristics with increasing U , but

the slope changes sign upon becoming an insulator. In the insulating states, both structures

exhibit low-frequency values of ImΣ(iωn) approaching zero at zero imaginary frequency, as

there are no electrons to scatter.
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5.2. Non-correlated orbitals
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FIG. S7: Self energy and scattering rate of non-correlated orbitals. a,b Temperature

evolution of the imaginary part of the self energy on the imaginary axis, ImΣ(iωn), for a the P3

structure and b the P1 structure. We display ImΣ(iωn) for the non-correlated orbitals by averaging

them (see Fig. 4 in the main text for the self-energy of correlated orbitals). c Scattering rate of

non-correlated orbitals in the metallic state of the P3 structure as a function of temperature. The

scattering rate is averaged over the dxy, dx2−y2 , and dz2 orbitals. d Self energy of the dxy orbital

on the real axis and total DOS of the insulating state of the P3 structure. e Scattering rate

of non-correlated orbitals in the metallic state of the P1 structure as a function of temperature.

The scattering rate is averaged over the d1, d2, d3, and d4 orbitals. In c,e, the scattering rate

Γ ∼ −ImΣ(i0+) is obtained using a linear fit over the first two Matsubara frequencies. f Self

energy of the d1 orbital on the real axis and total DOS of the insulating state of the P1 structure.

For completeness, we also provide a detailed analysis on the self energy of the non-

correlated orbitals in Fig. S7: dxy, dx2−y2 , and dz2 orbitals for the P3 structure, and d1,

d2, d3, and d4 orbitals for the P1 structure, which are away from the Fermi level. In the

metallic states, these non-correlated orbitals are Fermi liquid states for both structures,

as confirmed by the first Matsubara frequency rule in Supplementary Note 4. The low-

frequency behaviour of ImΣ(iωn) for the non-correlated orbitals in metallic states shows

linear behaviour and zero scattering rate at low temperatures (left panels in Figs. S7a,b).

The scattering rates of the non-correlated orbitals for both structures exhibit quadratic

temperature dependence (Figs. S7c,e), as expected for Fermi liquid states. In the insulating

states for both structures, the real and imaginary parts of the self energy for the non-

correlated orbitals on the real axis exhibit featureless values close to zero, without a pole

structure within the gap (Figs. S7d,f). This confirms that the non-correlated orbitals are

not relevant for Mott gap opening.
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