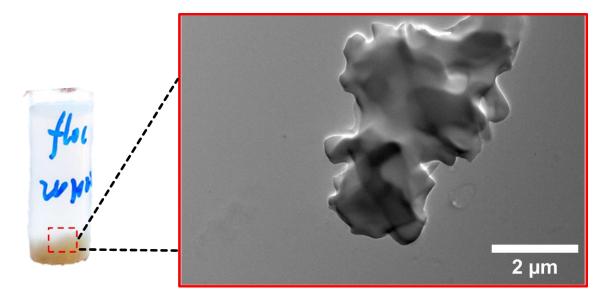
Supplementary Information

Fully bio-based water-resistant wood coatings derived from tree bark

Fengyang Wang¹, Mohammad Morsali^{1,2}, Jānis Rižikovs³, Ievgen Pylypchuk¹, Aji P. Mathew¹, Mika Sipponen*^{1,2}

¹Department of Materials and Environmental Chemistry, Stockholm University,


SE-10691, Stockholm, Sweden

²Department of Materials and Environmental Chemistry, Wallenberg Wood Science Center, Stockholm University, SE-10691, Stockholm, Sweden

³Latvian State Institute of Wood Chemistry, Biorefinery Laboratory, Latvia

*Corresponding to <u>mika.sipponen@mmk.su.se</u>

Keywords: wood coating, bark, suberinic acid, water resistance

Fig. S1: Digital photograph of pure suberin fatty acids particles water dispersion(left) and the corresponding TEM images of the particles(right), which are aggregating and phase separating from water dispersion.

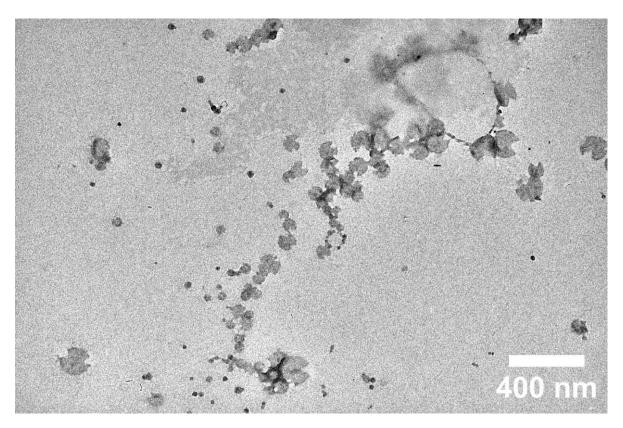


Fig. S2: TEM image of hybrid NPs with 30% polyphenols.

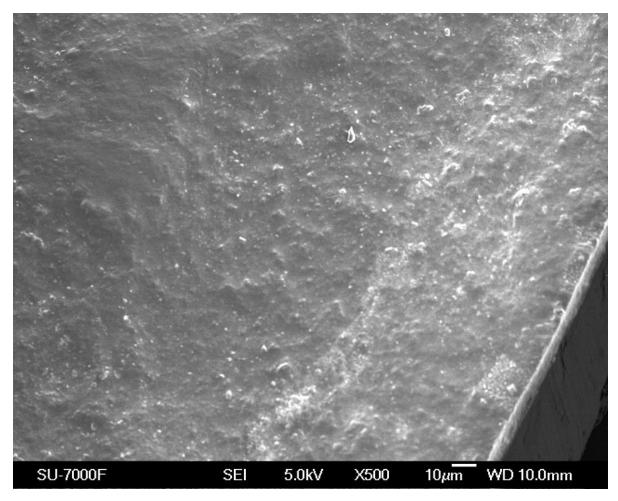
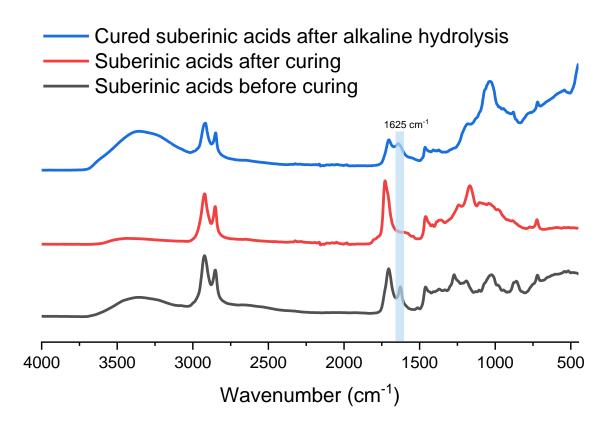



Fig. S3: SEM image of the surface of cured hybrid NPs (30% polyphenol) coating

Fig. S4: IR spectrum of suberinic acids (SAs) before curing, after curing, and after alkaline hydrolysing cured SAs

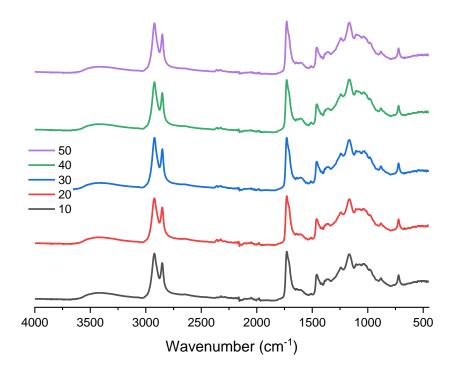
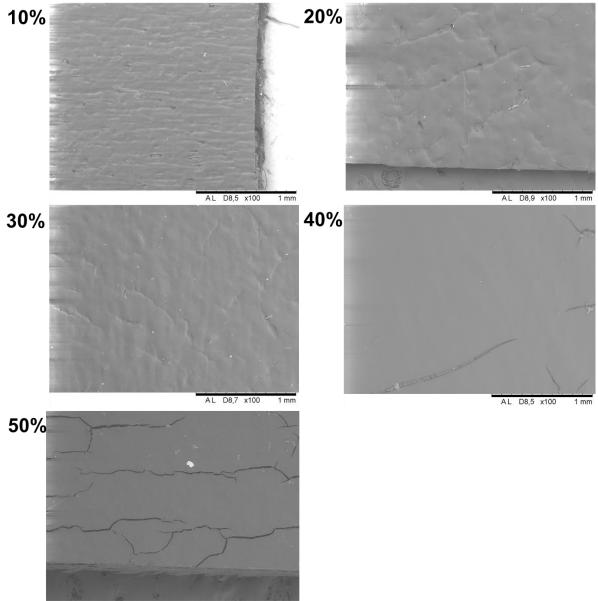
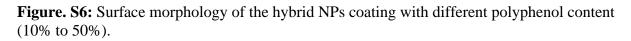




Fig. S5: IR spectrum of cured hybrid NPs with different polyphenol content (10-50%)

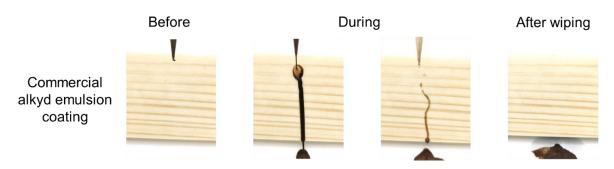


Fig. S7: The stain resistance performance of commercial alkyd emulsion coating.

		-	_	
Label in	Material	Bio-based	Water absorption	Ref.
Fig. 7		material % (dry)	value (g/m ²)	
1	Linseed oil	20-40	110	1
2	Alkyd emulsion	0	240	1
3	Waterbonrne	0	640	2
	polyurethane			
4	Swedish red paint	44	1034	1
5	Acrylic	40	1100	3
6	Bio-based	45	825	4
	polyurethane			
7	Bio-based acrylic	39	720	5
8	Tung oil	100	700	6
9	Linseed oil	100	1250	6

Table. S1: Bio-based content and water absorption values used for Fig. 7 of the main text.

Supplementary References

- Ekstedt, J.; Östberg, G. Liquid Water Permeability of Exterior Wood Coatings-Testing According to a Proposed European Standard Method. *Journal of Coatings Technology* 2001, 73 (914), 53–59. https://doi.org/10.1007/BF02698438/METRICS.
- Calovi, M.; Coroneo, V.; Rossi, S. Antibacterial Efficiency over Time and Barrier Properties of Wood Coatings with Colloidal Silver. *Appl Microbiol Biotechnol* 2023, 107 (19), 5975–5986. https://doi.org/10.1007/S00253-023-12710-1/FIGURES/7.
- (3) Calovi, M.; Rossi, S. The Impact of Stainless Steel Flakes as a Novel Multifunctional Pigment for Wood Coatings. *J Coat Technol Res* 2024, 21 (3), 1031–1047. https://doi.org/10.1007/S11998-023-00870-8/FIGURES/15.
- (4) Calovi, M.; Rossi, S. From Wood Waste to Wood Protection: New Application of Black Bio Renewable Water-Based Dispersions as Pigment for Bio-Based Wood Paint. *Prog Org Coat* 2023, *180*, 107577. https://doi.org/10.1016/J.PORGCOAT.2023.107577.
- (5) Angelski, D.; Atanasova, K. Water Permeability and Adhesion Strength of Bio-Based Coating Applied on Wood. *Drvna industrija* **2024**, 75 (1), 43–48. https://doi.org/10.5552/DRVIND.2024.0118.
- (6) Humar, M.; Lesar, B. Efficacy of Linseed- and Tung-Oil-Treated Wood against Wood-Decay Fungi and Water Uptake. *Int Biodeterior Biodegradation* 2013, 85, 223–227. https://doi.org/10.1016/J.IBIOD.2013.07.011.