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S1. Theory for SCSM

In our model, we consider the contact in the 2D double-strip model as point contact, which is 

demonstrated in the FE snapshots in Fig. S3b. Such point contact provides adequate obstruction and 

induces a transition from low-order to high-order buckling modes predicted by Euler-Bernoulli 

beam theory (Fig. S3c). Therefore, the deformation process of the double-strip structure can still be 

explained by the basic buckling mode of Euler-Bernoulli beam theory due to their special contact 

type. We assume pre-curved distance Δ = 0 and friction coefficient μ = 0 for an idealized model in the 

following derivation. Under axial end shortening, the strip undergoes buckling. The fourth-order 

linearized differential equation describing an Euler beam under axial compression is given by1
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where a prime denotes differentiation with respect to w. w = w(x) describes the centerline deflection of 

the beam. n is a constant. P is the axial force. I is the beam’s moment of inertia, and E is Young's modulus 

of the material. The boundary conditions of the strips are (0) ( ) (0) ( ) 0w w L w w L     . Next, the 

eigenvalues niL (i = 0,1,2…) are found to solve the equation, and the solutions can be divided into two 

groups:
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When a force F is applied to the strip, its deflection y(x) can be described as a superposition of these 

basic buckling modes
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where Ci are arbitrary constants, i.e., the amplitudes of the functions. The given strip's length excluding 

the contraction from the axial load (Lc + d0 – dp) provides the constraint, where Lc is the current strip's 

length under compression, dp is the contraction from the axial load, d0 refers to the total amount of 

compression. According to the geometric relation, we obtain the following equation:
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where A is the cross-section area of the beam, t is the strip’s thickness, and b is the thickness out of the 

plane. 

As extensively discussed in previous references2, 3, the first two modes of buckling wi(x) (i = 0, 1), 

make predominant contributions to the beam's deformation during buckling. Here, we can depict the 

specific configurations of two strips through a superposition of w1(x) and w0(x) as follows:
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Among them, we can determine the ratio C0/C1 in the hybrid buckling mode C0w0(x) + C1w1(x) through 

the deformation of w0(x) and w1(x) under equal compression. Then, we obtain the critical compression 

dbuckle for the initial buckling of the two strips. Utilizing geometric relations, we further calculate the 

critical compression dcontact for their contact, and dsnap1, dsnap2 for the first and second snap-through 

buckling (Fig. S4). The corresponding buckling mode curves predicted by the theoretical analysis are 

verified by FEA results (Fig. S5). Next, based on buckling mode analysis, we develop a piecewise linear 

model to describe the multi-step deformation process of the two-strip substructure under compression. 

Critical buckling forces for the different strip buckling modes are denoted as P0, P1, P2… (n = 1,2,3…). 

Each critical deformation state can be calculated and transitions between adjacent states are simplified 

by linearity. The ten stages of the two-strip substructure’s mechanical response are shown in Fig. S6 and 

the corresponding deformation analysis is outlined as follows:

(i) From axial compression to both strips buckling into a low-order buckling mode w0(x) when the 

compression force on the two strips reaches 2P0. 
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(ii) From both strips buckling to their contact when the compression reaches xcontact. During this 
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stage, the compression force F2 remains constant.
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(iii) The strip’s buckling mode w0(x) beginning to transform when the force arrives F3 = 2P0. Both 

strips prefer the high-order antisymmetric buckling mode w1(x) under constraint boundary conditions. 
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(iv) Because of the contact interaction, strips constrain each other until they transform into a 

superposition of two basic buckling modes, the hybrid buckling mode C0w0(x) + C1w1(x), under a 

constant high-order antisymmetric buckling force.
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(v) Due to a manufacturing defect, the center curves of two strips differ:  one strip degrades into 

w0(x) accompanied by energy release as the first snap-through buckling, while the other strip maintains 

its buckling configuration. This rapid process results in subsequent deformation similar to the unequal-

thickness strips model we previously studied. The virtual critical compression dv for one strip’s high-

order symmetric buckling mode w2(x) and the low-order buckling mode w0(x) of the other is first 

determined:
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Then, we can get
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(vi) In this stage, the asymmetrically deformed strip begins to transform into the high-order 

asymmetric buckling mode w1(x) until the compression comes to dsnap2, while the symmetrically 

deformed strip retains the same mode w0(x).
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(vii) The asymmetrically deformed strip buckles into w1(x) and rapidly returns to the opposite low-

order buckling mode -w0(x) with the second`` snap-through buckling. At this time, the force decreases to 

F6 = F2 and the displacement d6 is constant with d5.
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(viii) After the snap-through buckling, two strips maintain the low-order buckling mode, and the 

force F7 remains constant. 

 7 0 7 plastic2 ,F P x d d ， (S14)

Where dplastic is the maximum compression displacement of the two strips before plastic 

deformation.

(ix) Upon unloading, two strips remain in the low-order buckling mode until they recover the initial 

straight state.

 8 0 1 plastic2 ,F P x d d ， (S15)

(x) The process of axial compression until two strips completely recover their undeformed state. 
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Next, we adopt the specific damping coefficient to evaluate the effective energy-dissipation 

performance of metamaterials 4-6: ψ = 8Udis/Uideal, where ψ is the specific damping coefficient, Udis is the 

dissipated energy and Uideal is an ideal dissipation calculated by integrating the minimum rectangular area 

enclosing the local hysteresis. In contrast to the two-strip model with unequal thickness presented in our 

previous work7, the two-strip model with equal thickness exhibits a higher specific damping coefficient 

due to their more synergistic deformation, as shown in Fig. S7.

S2. FEA of SCSM

The commercial software Abaqus/Standard is utilized for static finite element simulations. As 

shown in the inset of Fig. S8a, a two-dimensional model of the two-strip substructure is established with 

a virtual defect to trigger the asymmetric buckling mode of the strip. The simulation adopted the linear 

elastic material using PLA parameters (E = 2650 MPa, υ = 0.3, and σs = 48 MPa) without considering 
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the viscosity. Vertical compression is applied on the top edge of the two-strip model, while a fixed 

boundary condition is imposed on its bottom edge. All models are discretized using four-node linear 

rectangular elements with reduced integration and plane strain (Abaqus type CPE4R) to accurately 

capture deformation. The mesh size is chosen as 0.2 mm based on convergence analysis. To ensure stable 

asymmetric buckling, the defect size is selected as Δh/L = 6.25e-3. The self-contact interaction is 

considered by assuming a tangential friction coefficient of 0.5 and hard contact in the normal direction, 

aligning with experimental results. We adopt the static general algorithm, encompassing loading and 

unloading analytical steps, and introduce a damping factor of 10-12 to expedite the convergence rate. 

According to the analysis of parameters that the previous theory neglected (Fig. S9), we observe that the 

concave offset Δ has an impact on both critical compression for two snapping of the two-strip 

substructure. In contrast, the friction coefficient μ specifically influences the first critical compression 

for snapping. Fig. S8b depicts the 2D SCSM model for static finite element simulations. In this model, 

tensile displacement is applied to the top edge, while a fixed boundary condition is imposed on the bottom 

edge. All other parameter settings are identical to those in the previous two-strip model.

S3. Experiment preparation

To fabricate the samples, we select PLA as the constituent material due to its high stiffness and low 

viscosity. The measured material properties are obtained in Fig. S10. Additionally, we fabricate the metal 

sample using Ni50.4Ti49.6 power through laser power bed fusion to validate the universality of our design. 

For quasi-static experiments, we employ a uniaxial testing machine (AG-IC) with a maximum load 

cell of 5 kN to measure the displacement-controlled force-displacement relations of the proposed 

metamaterials at a loading rate of 2 mm/min. 
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To investigate the dynamic response of the tensile SCSM to impact loading, we develop a custom 

tensile impact test platform, as shown in Fig. S20. The deployment includes an impactor (doll model), 

an inelastic rope, a ruler, an acceleration sensor (CT1001L, IPEP, produced by CENGTEC. INC.), and a 

dynamic data collection device (National Instruments NI 6341 DAQ card and LABVIEW program). The 

impactor weighing 150 g is connected to the bottom of the sample via the inelastic rope. Various impulse 

loads can be generated by dropping the impactor from different heights. The accelerometer is rigidly 

attached to the impactor to measure acceleration data for dynamic analysis. A camera with a framerate 

of 960 fps captures the deformation process.

Fig. S1. Calculation of the ratio φ between dissipated energy and strain energy of the two-strip 

substructure. (a) Schematic for calculating the ratio φ between dissipated energy and strain energy. 

The orange area, i.e., hysteresis, represents the dissipated energy, while the combined blue and 

orange areas, beneath the loading curve, indicate the total strain energy. (b) Phase diagram 

illustrating the dissipated energy ratio φ varying with dimensionless double-strip distance S/L and 

dimensionless strip thickness t/L from theory. The ratio φ slightly increases with increasing t/L and 

S/L, ranging from 33.6% to 35.8%. The minor variation in this parameter is due to both strain energy 

and dissipated energy exhibit similar trends with changes in structural parameters.
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Fig. S2. Energy dissipation from Snap 1 and Snap 2 of two-strip substructure under compression. Snap 

2 dissipates much more energy than Snap1 due to the occurrence of a higher buckling mode transition 

on Snap 2. These results are obtained from FEA.

Fig. S3. Contact and buckling mode analysis of the two-strip substructure. (a) Theoretical buckling 

mode transitions in double-strip structure under compression. (b) Contact analysis in double-strip 

structure from FEA. (c-d) Theoretical buckling mode transitions in individual interacting strips.
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Fig. S4. Centre line deflection curves of two-strip substructure for different critical states. The global 

position coordinates of the strips are denoted by (X, Y). Three critical buckling configurations 

corresponding to II, III, and V in Fig. 1e are shown in solid lines, while the initial and intermediate 

iterations are shown in dotted lines.

Fig. S5. Shape curves of the interacting strips for different critical states. These curves are extracted 

from FEA to verify the accuracy theoretical predictions. The numerical labels identify the specific 

deformation states in Fig. S3.

Fig. S6. Force-displacement curve derived from the piecewise linear theoretical model. The dotted line 

represents the virtual deformation path used to calculate stage vi.
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Fig. S7. Force-displacement curves of two equal-thickness strips and two unequal-thickness strips based 

on theoretical models. The thickness of two equal-thickness strips is t = 1 mm, whereas the thicknesses 

of two unequal-thickness strips are t1 = 1 mm and t2 = 1.4 mm. The dotted rectangular frames represent 

the ideal energy dissipation of local hysteresis for calculating the specific damping coefficient. The 

specific damping coefficients can be calculated as ψunequal = 4.73, and ψequal = 6.90. The two-strip model 

with equal thickness exhibits a specific damping coefficient about 45.9% higher than that of the previous 

two-strip model with unequal thickness.

Fig. S8. Depiction of finite element models. Vertical displacement x and clamped boundary conditions 

are applied on the upper and bottom edges of (a) two-strip models and (b) tensile SCSM models. The 

virtual defect Δh is introduced to trigger the asymmetric buckling mode.
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Fig. S9. Effect of (a) concave offset Δ, (b) friction coefficient μ, and (c) Poisson’s ratio ν on the 

mechanical response of two-strip substructure under compression.

Fig. S10. Stress-strain curves of PLA dog-bone samples obtained from tensile tests. The obtained 

material properties of PLA are Young's modulus E = 2650 MPa, and yield strength σs = 48 MPa.

Fig. S11. (a) Effect of the distance S of two strips on energy dissipation density of two-strip substructure 

under compression. (b) Effect of the strip thickness t on the critical strain εcr for Snap 2 of the two-strip 

substructure under compression.



12

Fig. S12. (a) Limit distance between limit structure and two-strip substructure. (b) Large distance causing 

excessive deflection (plastic deformation) of strips. (c) Small distance preventing snapping of strips.

Fig. S13. (a) Analysis of energy dissipation where the SCSM dissipates less energy than a single two-

strip structure. (b) Vertical displacement of points on both edges during loading and unloading. The 

studied points, marked in black and red, correspond to the curves of the same color. Analytical steps 

involve loading and unloading in FEA. The shear deformation, confirmed by the different vertical 

displacements of edges in the SCSM, limits its energy-dissipating performance.

Fig. S14. Force-displacement curves of SCSM unit cell under compression in the x direction 

obtained from experimental results and FEA. The curve exhibits the similarity with that of the two-

strip substructure, with the slight increase in stiffness caused by the external frame acting as a linear 

spring.
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Fig. S15. In-plane inclined tensile force on the SCSM. (a) Schematic diagram of the in-plane 

inclined tensile force applied to the metamaterial unit cell at an angle θ. (b) Force-displacement 

curves under inclined loading with different θ obtained from FEA. (c) Dissipated energy of the 

metamaterial unit cell under inclined tensile force with varying θ.

Fig. S16. Out-of-plane deformation of SCSM. (a) The test sample features SCSM unit cells arranged in 

a circular array, connected by flexible linkages fabricated in TPU. (b) Compression and tension 

experiments are conducted to assess the out-of-plane deformation of the sample. The mechanical 

response shows a hysteresis loop induced by sequential snap-through buckling, enabling energy 

dissipation in both tension and compression.
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Fig. S17. Programmable modular design of SCSM. (a) Programing parameter t0/t of SCSM for 

multiple force thresholds. The insect diagram depicts the SCSM modular with t0/t = 1.2. (b) 

Corresponding force-displacement curve exhibiting multiple force thresholds. (c) Programing 

parameter a/c of SCSM for multiple strain thresholds. The parameter is set to a/c = 4. (d) 

Corresponding force-displacement curve exhibiting multiple critical strains. The numerical labels 

in (c-d) correspond to specific deformation states in (a-b), respectively. Other unspecific parameters 

are consistent with those in Fig. 4a. Scale bar, 3 cm.

Fig. S18. Transverse coupling deformation of SCSM. Certain unit cells at the edges are unable to undergo 

snap-through buckling due to nonuniform deformation.
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Fig. S19. (a) Mechanical responses of SCSM with different numbers of serial unit cells. (b) Energy 

dissipation of SCSM with different numbers of serial unit cells. The linear relation is determined by the 

first two serial unit cells for comparison. The energy dissipation of the SCSM increases nonlinearly with 

the number of unit cells, which is attributed to the coupled vibration between multiple unit cells, known 

as the snap-back mechanism discussed in previous literature.8, 9

Fig. S20. Schematic diagram of impact testing platform.

Fig. S21. Dynamic response during impact at releasing height H = 30 mm. (a-b) Acceleration-time curve 

with an enlarged section. C1) The moment when the rope is fully stretched. C2) The sequential snap-

through buckling occurs, resulting in a sharp decrease in acceleration. C3) The deformation at the peak 

acceleration where all strips have snapped. (c) Acceleration amplitude-frequency curve obtained via fast 
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Fourier transform. The impact acceleration is mainly concentrated in the low frequency-band.
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