## **Supporting Information**

## Bioactive multifunctional dressing with simultaneous visible monitoring pH value and H<sub>2</sub>O<sub>2</sub> concentration for promoting diabetic wound healing

Jimin Huang, Jinzhou Huang, XinXin Zhang, Qinyi Xie, Yi Zheng, Chaoqin Shu, Zhe Shi, Xiao Wang, Jiajie Chen, Bing Ma, Chengtie Wu, Yufang Zhu\*

<sup>a</sup> State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences
1295 Dingxi Road, Shanghai 200050, P.R. China
\* Prof. Yufang Zhu, Email: <u>zjf2412@163.com</u>

<sup>b</sup> Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences
19A Yuquan Road, Beijing 100049, P. R. China

<sup>c</sup> School of Pediatrics, Chongqing Medical University136 Zhongshan 2nd Road, Chongqing 400014, P. R. China

| BG          | 0              | Si | P | Ca |                    |
|-------------|----------------|----|---|----|--------------------|
| 1 mol%EuBG  | 0              | Si | P | Ca | Eu                 |
| 3 mol%EuBG  | °<br>· · · · · | Si | P | Ca | Eu                 |
| 5 mol%EuBG  | 0              | Si | P | Ca | Eu<br>Eu<br>Eu     |
| 10 mol%EuBG | 0              | Si | P | Ca | Eu<br>2 <u>μ</u> m |

**Figure S1.** SEM-EDS elemental mappings of x mol%EuBG particles (x=0, 1, 3, 5, 10).



**Figure S2.** Actual mole percentage of  $Eu_2O_3$  in x mol%EuBG particles obtained by ICP testing (x=0, 1, 3, 5, 10).



**Figure S3.** Particle size distribution of x mol%EuBG particles (x=0, 1, 3, 5, 10) obtained by ImageJ statistics.



Figure S4. (a) SEM image of  $MoO_3$  powders. (b) XRD patterns of  $MoO_3$  powders and  $MoO_{3-x}$  nanosheets.



Figure S5. Visible color changes of the  $MoO_{3-x}$  nanosheet solutions with different concentration of  $H_2O_2$  (0-200 µmol L<sup>-1</sup>).



**Figure S6.** Live/dead staining images and corresponding cell relative number of (a, b) HDFs and (c, d) HUVECs (n=4). All data are expressed as means  $\pm$  standard deviation, one-way ANOVA with Bonferroni multiple comparison corrections, \*\*p < 0.01.



Figure S7. SEM-EDS elemental mappings of the inside of SA, EuBG-SA, and  $MoO_{3-x}$ -EuBG-SA dressings.



**Figure S8**. SEM-EDS elemental mappings of the surface of SA, EuBG-SA, and  $MoO_{3-x}$ -EuBG-SA dressings (a) before and (b) after immersing in Tris-HCl (pH=7.4) for 5 days.



Figure S9. The swelling rate of SA, EuBG-SA, and  $MoO_{3-x}$ -EuBG-SA dressings (n=6). All data are expressed as means  $\pm$  standard deviation.



Figure S10. Hydrophilicity tests of SA, EuBG-SA, and MoO<sub>3-x</sub>-EuBG-SA dressings.



Figure S11. Cell viability of RAW 264.7 cultured with  $MoO_{3-x}$ -EuBG-SA dressings, (n=5). All data are expressed as means  $\pm$  standard deviation.



**Figure S12.** The representative (a) Arg-1 and (b) TNF- $\alpha$  fluorescence images of the RAW 264.7 cells (blue: cell nuclei; green: cytoskeleton).



Figure S13. pH value and  $H_2O_2$  concentration of mice wound, n=4. All data are expressed as means  $\pm$  standard deviation.



**Figure S14**. (a) Glucose concentrations in blood and (b) diabetes mice weight from day 0 to day 14 after injury (n=5). All data are expressed as means ± standard deviation.

| Gene                                                           | Primer sequence                                 |
|----------------------------------------------------------------|-------------------------------------------------|
| GADPH F                                                        | GATTTGGTCGTATTGGGCG                             |
| GADPH R                                                        | CTGGAAGATGGTGATGG                               |
| VEGF F                                                         | TATGCGGATCAAACCTCACCA                           |
| VEGF R                                                         | CACAGGGATTTTTCTTGTCTTGCT                        |
| HIF-1a F                                                       | ATCCATGTGACCATGAGGAAAT                          |
| HIF-1a R                                                       | CTCGGCTAGTTAGGGTACACTT                          |
| bFGFR F                                                        | GACGGCTCCTACCTCAA                               |
| bFGFR R                                                        | GCTGTAGCCCATGGTGTTG                             |
| VEGF F<br>VEGF R<br>HIF-1α F<br>HIF-1α R<br>bFGFR F<br>bFGFR R | TATGCGGATCAAACCTCACCA<br>CACAGGGATTTTTCTTGTCTTG |

**Table S1.** Primers sequences for RT-qPCR.

**Table S2.** Primers sequences for RT-qPCR.

| Gene    | Primer sequence          |
|---------|--------------------------|
| GADPH F | AGAACATCATCCCTGCATCCAC   |
| GADPH R | TCAGATCCACGACGGACACA     |
| TNF-α F | CTGTAGCCCACGTCGTAGCAA    |
| TNF-α R | TGTCTTTGAGATCCATGCCGTT   |
| iNOS F  | CAGAAGTGCAAAGTCTCAGACAT  |
| iNOS R  | GTCATCTTGTATTGTTGGGCT    |
| Arg-1 F | AACCTTGGCTTGCTTCGGAACTC  |
| Arg-1 R | GTTCTGTCTGCTTTGCTGTGATGC |
| CD206 F | ATCCACGAGCAAATGTACCTCA   |
| CD206 R | TAGCCAGTTCAGATACCGGAA    |