1	Supplementary Material for							
2	High-k Organic-Inorganic Hybrid Dielectric material for Flexible							
3	Thin-Film Transistors and Printed Logic Circuits							
4	Rixuan Wang ^{1†} , Hong Nhung Le ^{2†} , Cheolmin Jung ^{1†} , Hyeok-jin Kwon ³ , Zhijun Li ⁴ , Hyungdo							
5	Kim ⁵ , Zhi Hong Zhang ^{6*} , Juyoung Kim ^{2*} , Se Hyun Kim ^{1*} , Xiaowu Tang ^{6*}							
6	¹ Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.							
7	² Department of Advanced Materials Engineering, Kangwon National University, Samcheok							
8	25931, Republic of Korea.							
9	³ Department of Industrial Chemistry, Pukyung National University, Busan 48513, Republic of							
10	Korea.							
11	⁴ Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1							
12	2 Xiangshanzhi Lane, Hangzhou 310024, China.							
13	⁵ Graduate School of Engineering, Department of Polymer Chemistry, Kyoto University,							
14	Katsura, Nishikyo-ku, Kyoto 615-8510, Japan							
15	⁶ College of Material and Chemical Engineering, Zhengzhou University of Light Industry,							
16	Zhengzhou, Henan 450002, China.							
17 18	* Corresponding author E-mail: 2006025@zzuli edu.cn (Z. Zhang)							
19	iuvoungk@kangwon ac.kr. (I. Kim) shkim97@konkuk ac.kr. (S. H. Kim)							
20	xwtang@zzuli.edu.cn (X. Tang)							
20								
22								

2 Fig. S1. The chemical structure and synthesis pathway of AUP

2 Fig. S2. FTIR spectra of the three steps in the synthesis process of AUP component in O-I

3 hybrid solution.

- 2 Fig. S3. The DLS about AUP@SiOx and AUP@SiOx-184.

2 Fig S4. TGA data for the AUP@SiOx and AUP@SiOx-184 solutions.

2 Fig S5. Coating tests of AUP@SiOx-184 and AUP@SiOx solutions on glass and PET
3 substrates, respectively.

Table S1. Hardness testing after coating and curing of AUP@SiOx-184 and AUP@SiOx
 solutions on glass and PET substrates, respectively.

O-I hybrid coating film	Pencil hardness on glass slide (H)	Pencil hardness on PET film (H)		
AUP@SiOx	7	3		
AUP@SiOx-184	7	4		

MALDI-TOF-MS analysis of AUP@SiOx-184 O-I hybrid Solutions

2 Fig S6. The molecular weight range of AUP@SiOx and AUP@SiOx-184.

2 Fig S7. ²⁹SI-NMR spectrum of AUP@SiOx and AUP@SiOx-184.

- 2 Fig S8. Schematic diagram of the film fabrication mechanism using a uniform AUP@SiOx sol-
- 3 gel.

2 Figure S10. AFM image of AUP @SiOx.

4 Fig. S11. Contact angle of the dielectric layer after curing of AUP@SiOx and AUP@SiOx-

5 184.

6

7 Table S2. The surface tension of the two dielectric layers

	Contact Angle [°]		γ_s^p	γ_s^d	γ_s
Dielectric type	Water	Diiodomethane	[mJ m ⁻²]	[mJ m ⁻²]	[mJ m ⁻²]
AUP@SiOx	43.5	41.8	28.6	27.0	55.6
AUP@SiOx-184	45.7	42.2	27.0	27.2	54.2

8

2 Fig S12. AUP@SiOx-184 full scan XPS spectra.

3

4 Fig S13. AUP@SiOx full scan XPS spectra.

2 Fig S14. AUP@SiOx-184 C 1s and Si 2p XPS spectra.

4 Fig S15. AUP@SiOx and AUP@SiOx-184 O 1s XPS spectra.

2 Fig S16. Leakage current stability under folding of AUP@SiOx and AUP@SiOx-184 MIM

3 dielectric layers.

- 1
- 2 Fig. S17. EHD printed AUP@SiOx and AUP@SiOx-184 dielectric films at different printing
- 3 speeds.

- 2 Fig. S18. AFM image for AUP@SiOx dielectric film (b) and AUP@SiOx dielectric film (e)
- 3 with 50-nm-thick PTCDI- C_8 .

4

5 Fig. S19. The corresponding 2D-GIXD images of PTCDI-C₈

6

AUP@SiOx

AUP@SiOx-184

1

- 2 Fig. S20. OM image of NOT, NAND and NOR gates with C_{10} -DNTT and PTCDI- C_8 active
- 3 layers with AUP@SiOx and AUP@SiOx-184 dielectric layers on the SiO₂ wafer has been
- 4 prepared.

2 Fig. S21. NOT, NAND, and NOR logic gates printed by EHD, using AUP@SiOx for the

3 dielectric layer (left) and AUP@SiOx-184 for the dielectric layer (right).

4

2 Fig. S22. Output characteristics of OTFTs prepared using EHD printing at PET films.