Supporting Information

Synergistic Dual-Layer Passivation Boosts Efficiency and Stability in Perovskite Solar Cells Using Naphthol Sulfonate

Hao Liu,^{‡a} Ning Jiang,^{‡a} Jintao Wang,^{*b} Shuming Chen,^c Jian Zhang^{*a} and Yu Duan^{*a}

^a College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

^b College of Information Engineering, Yantai Institute of Technology, Yantai 264005, China

^c College of Physics, Changchun University of Science and Technology, Changchun 130012, China

E-mail: wangjintao@yitsd.edu.cn, zhangjian@jlu.edu.cn, duanyu@jlu.edu.cn

‡ Equal contributions.

Experimental Section Materials

Dimethyl sulfoxide (DMSO), Dimethylformamide (DMF), Isopropanol (IPA), Methylammonium bromine (MABr), Methylammonium chloride (MACl), Forma-iminium iodide (FAI), Lead iodide (PbI₂), Chlorobenzene (CB) and PTAA were purchased from Advanced Election Technology Co., Ltd. Dipotassium 7-hydroxynaphthalene-1,3-disulphonate (K-NDS) and Tris (pentafluoro phenyl) borane (TPFB) were obtained from TCI company. All materials in this study were used as received without further purification.

Solutions Preparation

The PbI_2 solution was obtained by dissolving 1.4 mM PbI_2 into 1 mL DMF/DMSO mixed solvent (volume ratio is 94:6). The FAI/MABr/MACl solution was prepared by dissolving 70 mg FAI, 3 mg MABr and 11 mg MACl into 1 mL IPA. The solutions were stirring overnight before use. The HTL precursor solution was prepared by dissolving 40 mg PTAA with 4 mg TPFB in 1mL CB. Mixing K-NDS with deionized water to obtain K-NDS solutions with different concentrations (2, 4, 6 mg/ml).

Device fabrication

The ITO substrates were first ultrasonically washed by ethanol, acetone, and deionized water for 30 min followed by drying under nitrogen stream and treatment with UV-ozone for 30 min to remove any organic residues and enhance the surface hydrophilicity. Then, the SnO2 colloidal solution was diluted in deionized water (volume ratio is 1:6) and then spin-coated on ITO surface at the rate of 3000 rpm for 30 s, followed by annealing at 150 °C for 30 min. After cooling down to room temperature, another UV-ozone treatment was carried out for 30 min. The K-NDS solution with different concentrations (2, 4, 6 mg/ml) was spin-coated on the asfabricated SnO₂ film at the rate of 2000 rpm for 30 s, following by annealing at 100 °C for 10 min. After cooling down to room temperature, another UV-ozone treatment was carried out for 30 min, then transferred into a nitrogen glove box. The PbI₂ solution was spin-coated on the SnO₂/K-NDS substrate at 1500 rpm for 30 s and annealed at 70 °C for 1 min. And the FAI/MABr/MACl solution was spin-coated on the substrate at 1800 rpm for 30 s, then the film was annealed outside the glove box at 150 °C for 10 min with 40% humidity, resulting in a $(FAPbI_3)_x(MAPbBr_3)_{1-x}$ perovskite film (x is 0.92 in the precursor). The PTAA solution was spin-coated on the perovskite film as a hole conductor. The devices were completed by evaporation 100 nm silver in a vacuum chamber (base pressure, 5×10^{-4} Pa).

The perovskite bottom interface can be exposed using the following process:

- 1. Spin-coat a layer of UV-curable adhesive onto the perovskite film.
- 2. Cure the adhesive using an ultraviolet lamp.
- 3. Remove the cured adhesive layer.

Characterization

The *J-V* characteristics of the photovoltaic cells were measured under ambient conditions using a Keithley 2400 source meter, with simulated AM 1.5G solar illumination (100 mW/cm²). Dark current and steady-state power output were also measured using the Keithley 2400. Electrochemical impedance spectroscopy (EIS) and capacitance-voltage (*C-V*) measurements were conducted using an IM6e Electrochemical Workstation (ZAHNER).

X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) were performed in an ultrahigh vacuum environment (base pressure of 1×10^{-10} mbar) using a Thermo Scientific Nexsa G2 system. XPS utilized a monochromatic Al K α X-ray source (1486.6 eV), while UPS employed monochromatic He I α radiation (21.22 eV). The ¹H NMR measurement in solution was carried out on the Bruker AVANCE III 400 (400 MHz)

spectrometer at room temperature. Deuterated DMSO was used as ¹H NMR solvent to dissolve the K-NDS and PbI₂ just before the ¹H NMR mearsurement.

Atomic force microscopy (AFM) measurements were conducted using a Dimension Icon-PT (Bruker). Fourier-transform infrared (FTIR) spectroscopy of the SnO_2 and perovskite films was performed in transmission mode using a Nicolet 6700 FTIR spectrometer (Thermo Fisher Scientific). UV-visible (UV-vis) spectra were recorded using a UV-3600 spectrophotometer (Hitachi). X-ray diffraction (XRD) patterns were acquired using a PANalytical X-ray diffractometer with Cu K α radiation.

Surface and cross-sectional scanning electron microscopy (SEM) images were obtained using a Nova Nano 230 instrument. Steady-state and time-resolved photoluminescence (PL) measurements were carried out using an FS5 spectrometer (Edinburgh Instruments). Water contact angle measurements were performed using a Krüss DSA100s drop shape analyzer.

Figure S1. The structure of the K-NDS.

Figure S2. The fabrication of the PSCs.

Figure S3. XPS high-resolution spectra of SnO₂ and SnO₂/K-NDS for (a) K 2p, (c) S 2p.

Figure S4. The XRD spectrum of SnO₂ and SnO₂/K-NDS.

Figure S5. The Tauc plot of the SnO₂ and SnO₂/K-NDS.

Figure S6. The Schematic illustration of energy level diagram in the PSCs.

Figure S7. The contact angle measurements of (a) ITO, (b)ITO/SnO₂ and (c) ITO/SnO₂/K-NDS films.

Figure S8. XPS high-resolution spectra of Perovskite and K-NDS/ Perovskite for K 2p.

Figure S9. ¹H NMR spectra of K-NDS and its mixture with PbI_2 in deuterated DMSO solution.

Figure S10. The FTHM of (100) crystallographic plane for perovskite and K-NDS/ perovskite.

Figure S11. Statistical histogram of grain size of perovskite and K-NDS/perovskite.

Figure S12. The cross-sectional SEM images of the perovskite on (a) SnO_2 and (b) SnO_2/K -NDS.

Figure S14. The annealing images of perovskite films deposited in SnO₂ and SnO₂/K-NDS.

Figure S15. The statistics parameters distribution of PCSs devices (a) V_{OC} , (b) FF, (c) J_{SC} and (d) PCE.

Figure S16. The RS and FS J-V curves of PSCs devices deposited on (a) SnO₂ and (b) SnO₂/K-NDS ETL.

Figure S17. The contact angle measurements of perovskite film deposited on (a) SnO_2 and (b) SnO_2/K -NDS.

	Peak	Atomic conc (%) Pristine			Atomic conc (%) With K-NDS			
	Sn-O		66.01			93.56		
	O_V / O_{OH}		33.99			2.40		
	SO ₃ -	0			4.04			
Table S2. The calculation of the energy alignment.								
	Sample	E _{SEC} (eV)	E_{VBE} (eV)	E_F (eV)	E_g (eV)	<i>VBM</i> (eV)	CBM (eV)	
	Pristine	16.93	4.08	-4.29	4.16	-8.37	-4.21	
	With K-NDS	17.07	3.87	-4.15	4.15	-8.02	-3.87	
Table S3. The parameters of TRPL measurement.								
	Device	$ au_1$ (ns)	A ₁ (%)	$ au_2$ (ns	2 S)	A ₂ (%)	$ au_{ave}$ (ns)	
	Pristine	28.61	16.27	209	.00	65.50	203.07	
	With K-NDS	36.57	21.69	191	.33	59.61	181.27	

Table S1. O content of the surface of SnO₂ and SnO₂/K-NDS of O 1s high resolution spectra.

Table S4. The calculated parameters and trap density (N_t) of perovskite films based on SnO₂ and SnO₂/K-NDS.

Devrice	L	V_{TFL}	N_t
Device	(nm)	(V)	(cm^{-3})
Pristine	547.96	0.26	3.063×10 ¹⁵
With K-NDS	550.10	0.14	1.636×10^{15}

Table S5. Performance summary the champion PSCs devices with various K-NDS cocentration.

Dovico	J_{sc}	V_{oc}	FF	PCE
Device	(mA/cm^2)	(V)	(%)	(%)
0 mg/ml	25.20	1.150	75.27	21.81
2 mg/ml	25.36	1.166	76.56	22.64
4 mg/ml	25.44	1.172	77.15	23.00
6 mg/ml	25.30	1.160	75.98	22.29

Table S6. Performance summary	the PSCs de	evices with and	l without K-NDS	modification.
---------------------------------------	-------------	-----------------	-----------------	---------------

ible bor remonitance summary the roles devices with and without it rubb mounteation.						
Daviaa		J_{sc}	V_{oc}	FF	PCE	ш
Device		(mA/cm^2)	(V)	(%)	(%)	111
Drigting	RS	25.20	1.150	75.27	21.81	0.0422
Pristine	FS	24.92	1.130	74.20	20.89	0.0422
With	RS	25.44	1.172	77.15	23.00	0.0217
K-NDS	FS	25.32	1.166	76.23	22.50	0.021/