Electronic Supporting Information (ESI)

Porous network of boron-doped IrO² nanoneedles with enhanced mass activity for acidic oxygen

evolution reactions

Fei Hu,*a Peiyu Huang, ^a Xu Feng, ^a Changjian Zhou, ^a Xinjuan Zeng, ^a Congcong Liu,^c

Guangjin Wang,*^a Xiaowei Yang * ^b and Huawen Hu*^a

^a School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China

^b School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China

^c Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China

* Corresponding authors' email addresses: mfhufei@fosu.edu.cn; huawenhu@126.com; wgj501@163.com; yangxw@sjtu.edu.cn

Figure S1. a-d) SEM images of the IrO₂ samples prepared with different structure-shaping agents. (a) and (b) correspond to the samples prepared using chloride ions as the structure-shaping agent, while (**c**) and (**d**) involve the use of a mixture of chloride ions and cysteamine hydrochloride as the structure-shaping agent. Scale bars in (**a-d**): 400 nm.

We selected typical chloride ions and cysteamine hydrochloride as the structure-shaping agent (i.e., capping agent) for the anisotropic growth of $IrO₂$, given their strong adsorptive nature. In our preliminary experiments, we confirmed that chloride ions could function as structure-shaping agents, facilitating the formation of nanorod morphologies when used in appropriate amounts (see **Figure S1a**, and **S1b**). Additionally, we explored the combined effects of both chloride ions and cysteamine hydrochloride on the IrO₂ morphology variation. The coexistence of chloride ions and cysteamine hydrochloride results in enhanced uniformity of the produced nanorods or nanoneedles (please see **Figure S1c** and **d**). However, the exclusive use of cysteamine hydrochloride allowed the highest uniformity among the generated nanoneedles that intertwine into a porous network. Therefore, we selected cysteamine hydrochloride as the structure-shaping agent for the preparation of the porous network of $IrO₂$ nanoneedles. Cysteamine hydrochloride acts as a capping agent, adsorbing onto specific facets and altering the surface energy of the IrO2-cysteamine complex. This causes the crystal to preferentially grow along the <101> direction, resulting in a nanoneedle morphology with a small tip diameter (*Mater. Lett.*, 2012, **68**, 153-156).

Figure S2. a-c) SEM images of A-IrO₂ (a) and B-IrO₂ (b), and L-IrO₂ (c). (d) TEM image of L-IrO₂.

Figure S3. The original TEM image of B-IrO₂. The red dashed rectangle highlights the region displayed in **Figure 2c**.

Figure S4. a-f) SEM images of porous networks of IrO₂ and B-IrO₂ nanoneedles synthesized at the B/Ir atomic ratios of (**a**), 3 (**b**), 5 (**c**), 8 (**d**), 11 (**e**), and 13 (**f**).

Figure S5. The optimized configurations of IrO₂ and B-IrO₂ constructed by doping 2, 4, 6 and 8 boron atoms based on DFT computations. Red, blue, and pink spheres represent oxygen, iridium, and boron atoms, respectively.

Figure S6. Observing the optimized configurations of IrO₂ and B-IrO₂ constructed by doping 2, 4, 6, and 8 boron atoms at different viewing angles based on DFT computations. Red, blue, and pink spheres represent oxygen, iridium, and boron atoms, respectively.

Figure S7. BJH pore size distribution plots depicted based on the desorption branch of the N₂ physisorption isotherms of the A-IrO₂, L-IrO₂, and B-IrO₂ samples.

When A-IrO₂ nanoparticles are transformed into L -IrO₂ and B-IrO₂ nanoneedle networks, the mesopore content increases, as evidenced by a more pronounced hysteresis loop. Additionally, B doping promotes further IrO₂ anisotropic crystallite growth, reducing the micropore content to some extent. Similar N_2 adsorption isotherms were observed for IrO₂-based granules (*Nat. Commun.*, 2023, 14, 1248; *Sci. China Mater.*, 2021, **64**, 2958-2966.) and nanoneedles (*Adv. Funct. Mater.*, 2017, **28**, 1704796; *Nat. Commun.*, 2023, **14**, 1248). The total pore volumes, micropore volumes, and BJH pore size distribution of these samples were summarized in **Table S1** and **Figure S7**. The pores in A-IrO₂ are primarily concentrated below 4 nm, whereas B-IrO₂ contains larger pores up to 10 nm. It is recognized that micropores significantly contribute to the specific surface area, as supported by references [48, 49] in the revised manuscript (*Adv. Energ. Mater.*, 2011, 1, 678-683; *Energy Fuels*, 2023, 37, 8284-8295). A-IrO₂ exhibits a micropore volume of 0.5159 cm³·g⁻¹, which is two orders of magnitude higher than that of B-IrO₂ (0.0042 cm³·g⁻¹).

Figure S8. EPR spectra of the A-IrO₂ and B-IrO₂ samples.

Figure S9. The current density against the scan rate of B-IrO₂, L-IrO₂, A-IrO₂, and CP in the non-faradaic current regions. The C_{dl} values of B-IrO₂, L-IrO₂, and A-IrO₂ were calculated as 10.34, 35.76, and 49.14 mF·cm⁻², respectively. Thus, the corresponding ECSAs of B-IrO₂, L-IrO₂, and A-IrO₂ were calculated as 344.6, 1192, and 1638, respectively.

Figure S10. Comparison of the mass activity of our B-IrO₂ (indicated by an asterisk) with those of previously reported Irbased anodes. For comparison with that of B-IrO₂, the mass activities at 1.55 V_{RHE} were extracted from the related references (please refer to the updated **Table S3** with more examples). Currently, the loading amount of the Ir catalyst is higher than 1 mg/cm². The dashed area represents the Department of Energy (DOE)'s target, which aims to reduce In loading to below 0.5 mg/cm² and 0.1 mg/cm², corresponding to projected advancements of up to 20 GW/a and 100 GW/a, respectively.

Mass activity measured using a half-cell setup may not accurately reflect the performance of a PEMWE cell, as the mass loading of Ir in PEMWE systems is generally greater than 1 mg/cm² due to the considerations related to anode preparation and the lifetime of the PEMWE [Science 384 (2024) 666-670; Adv. Mater. 36 (2024) 2402643; Adv. Mater. 36 (2024) 2314049; J. Am. Chem. Soc. 146 (2024) 7858- 7867]. Our PEMWE incorporating 0.08 mg_{Ir}/cm² of B-IrO₂ possessed the mass activities to be 3625 and 10025 mA·mg $_{Ir}$ ⁻¹ at cell voltages of 1.6 and 1.9 V, respectively.

Figure S11. a-e) Effects of boron contents in precursors (**a**), cysteamine·HCl contents in precursors (**b**), calcination temperatures (c), holding durations (d), and loading amounts (e) on the OER performance of B-doped IrO₂.

Figure S12. (a) Overlapped CV curves of a series of B-doped IrO₂ samples bearing different B doping extents (including B3, B5, B8, and B11) for measuring their active Ir sites. (**b-d**) Single CV curves of different B-doped IrO₂ samples, including B3 (**b**), B5 (**c**), and B8 (**d**). Note that redox peaks can barely be observed in (**a**) for the B11 sample with excessive B doping. It can be noted that the B8 (namely B-IrO2) sample exhibits the greatest number of electrochemically active Ir sites.

Figure S13. a-f) Nyquist plots (a-c), and Bode plots (d-f) of A-IrO₂ (a, d), L-IrO₂ (b, e), and B-IrO₂ (c, f) at different potentials. (g , h) The optimum fitting values of R_{ct} and $Q_{ct}(g)$ and R_1 and $Q_1(h)$ plotted as a function of applied potentials for $B-IrO₂$.

Figure S14. Equivalent circuit used for fitting the impedance data presented in **Figure S13a**.

Figure S15. The optimized atomic models for OER intermediates on B-IrO₂: (a) side view, (b) top view.

Figure S16. The optimized atomic models for OER intermediates on IrO₂: (a) side view, (b) top view.

Figure S17. Ir 4f XPS spectra for B-IrO₂ before and after the stability test.

Figure S18. SEM image showing the distinct structure of B-IrO₂ on the Ti-felt substrate.

Figure S19. (a) Static durability test of the B-IrO₂ catalyst in a PEMWE single cell by galvanostatic operation at 2.8 A⋅cm² for 35 h. (**b**) On-site observation of the operation current and voltage after running for 5 h.

The rapid proton transfer in the PEMWE system is advantageous for achieving high current density output. However, it presents a challenge for anodic catalysts. To evaluate the stability of the $B-IrO₂$ catalyst, we conducted a static durability test at a current density of 2.8 A·cm-2 for 35 h. The operation began at 2.98 V and remained stable within 4.00 V for the first 24 h, after which the cell voltage increased rapidly. During the operation, the cell was slightly heated up. **Figure S19** illustrates the operation current and voltage after running for 5 h. Overall, the voltage during operation at 2.8 A·cm-2 remains significantly high and is thus far from practical utilization. The performance of our PEMWE with B-IrO₂ can be further improved by meticulous adjustments to the gas diffusion layers (GDLs), catalyst-coated membrane (CCM), gas and fluid channels, and other components.

Figure S20. Electrochemical OER performance of B-IrO₂ in 1 M KOH and 0.5 M H₂SO₄ electrolytes. (a) Polarization curves recorded at a scanning rate of 5 mV·s−1 . (**b**) Tafel plots derived from the polarization curves shown in (**a**). (**c**) Nyquist plots of samples recorded at 1.5 V_{RHE}. (**d**) Chronopotentiometric measurements conducted at 10 mA·cm⁻².

Sample Parameter	$A-IrO2$	$L-IrO2$	$B-IrO2$
Total pore volume $(cm3·g-1)$	0.1609	0.2171	0.0995
t-Plot micropore volume $(cm3·g-1)$	0.5159	0.0409	0.0042

Table S1. Summary of the total pore volumes and micropore volumes of the A-IrO₂, L-IrO₂, and B-IrO₂ samples.

Electrocatalysts		Electrolyt $\mathbf e$	η @j ₁₀ , mV	η @j ₁₀₀ , mV	Mass activity $@1.55 \text{ V }$ RHE	Stability	Ref.
$B-IrO2$		0.5 M H_2SO_4	218	268	3656.3 mA \cdot mg ⁻¹ at the Ir loading of 0.08 mg_{Ir}/cm^2	150 h @10 mA·cm 2 & 160 h $@$ 1 A·cm ⁻² for cell	This work
B-doped amorphous iridium oxide $(IrOx-B)$		0.1 _M HCIO ₄	$255 - 2$ 92		1523.2 to 5271.6 $mA \cdot mg^{-1}$ with the Ir loading from 51 to $5.1 \,\mu g_{lr}/cm^2$	10 h $@10$ mA \cdot cm ⁻²	Sci. China Mater. 64 (2021) 2958-2966
B-incorporated IrO ₂ -Ta ₂ O ₅ $(B_{0.6}$ -IrO ₂ -Ta ₂ O ₅ /Ti)		$0.5~\mathrm{M}$ H ₂ SO ₄	210	264		400 h @100 $mA \cdot cm^{-2}$	Chem. Eng. J. 491 (2024) 152040
Nanoporous high- entropy catalysts doped with B	Al ₉₄ Co ₁ Cu ₁ Fe ₁ Mo ₁ Ni ₁ B_1	1.0 M	295	~100		$\overline{1}$	Nanoscale 16 (2024)
	$\text{Al}_{93}\text{Co}_1$ Cu ₁ Fe ₁ Mo ₁ Ni ₁ I r_1B_1	KOH	277	~100	$\sqrt{2}$	55 h @100 mA·cm ⁻²	4803-4810
Ir/B_4C		0.1 M HCIO ₄	283	$\sqrt{2}$	1396.7 mA·mg-1	180 min @10 $mA \cdot cm^{-2}$	J. Power Sources 512 (2021) 230506
IrWB nanochannels		0.5 _M H ₂ SO ₄	291	350		800 h @100 $mA \cdot cm^{-2}$	Nat. Commun. 12 (2021) 3540

Table S2. Comparison of the performance of our B-IrO₂ with recently reported B-doped or incorporated IrO₂-based electrocatalysts for OER.

Note: η stands for the overpotential.

Electrocatal ysts	η @j ₁₀ (mV)	Mass activity	Mass activity $@1.55 \text{ V}_{RHE}$	Electrolyte	Loading amount	Ref.
		$2589.1 \text{ mA} \cdot \text{mg}^{-1}$				
$B-IrO2$	210	$@1.53$ V_{RHE}	$3656.3 \text{ mA} \cdot \text{mg}^{-1}$	$0.5 M H_2SO_4$	0.08 mg _{Ir} /cm ²	This work
Co-doped SrIrO ₃	245	\sim 1700 mA·mg ⁻¹ $@1.53$ V _{RHE}	2445.3 mA·mg-1	$0.5 M H_2SO_4$	0.025 mg/cm ²	Nat. Commun.15 (2024) 2928
Ir ₃ Ni	282	$3720 \text{ mA} \cdot \text{mg}_{\text{Ir}}^{-1}$ $@1.58\;\mathrm{V_{RHE}}$	1860 mA \cdot mg _{Ir} $^{-1}$	0.2 M HClO ₄	0.102 mg/cm ²	J. Am. Chem. Soc. 146(2024)7858-7867
Ir/WO ₃ /CC	249	$2858 \text{ mA} \cdot \text{mg}^{-1}$ $@1.53$ V _{RHE}	4732.7 $mA·mg-1$	$0.5 M H_2SO_4$	0.017 mg/cm ²	Angew. Chem. Int. Ed. (2024) e202406947
IrRuNiMoCo	243	$261.5 \text{ mA} \cdot \text{mg}_{\text{Ir}}^{-1}$ $@1.53$ V _{RHE}	332.1 mA \cdot mg _{Ir} $^{-1}$	$0.5 M H_2SO_4$	0.15 mg/cm ²	Adv. Mater. 36 (2024) 2314049
Ir-Ce SSO	238	$637.88 \text{ mA} \cdot \text{mg}^{-1}$ $@1.55 \text{ V }$ RHE	$1057.3 \text{ mA} \cdot \text{mg}^{-1}$	$0.5 M H_2SO_4$	396 μ g _{Ir} /cm ²	Adv. Funct. Mater. 34 (2024) 2400809
KIr_4O_8 Nanowire	266	109.6 mA \cdot mg ⁻¹ $@1.53$ V _{RHE}	$159.6 \text{ mA} \cdot \text{mg}^{-1}$	$0.5 M H_2SO_4$	0.281 mg/cm ²	Adv. Mater. 36 (2024) 2402643
IrO ₂ Nano Ribbons	205	2354.5 mA·mg ⁻¹ $@1.5 \text{ V }$ RHE		$0.5 M H_2SO_4$	0.23 mg _{Ir} /cm ²	Nat. Commun. 14 (2023) 1248
TaO_x/IrO_2	288	$345 \text{ mA} \cdot \text{mg}^{-1}$ $@1.53$ V_{RHE}	625.3 mA \cdot mg ⁻¹	0.1 M HClO ₄	0.28 mg/cm ²	Nat. Commun. 14 (2023) 5119
$Ir_{0.3}Cr_{0.7}O_2$	255	$81.258 \text{ mA} \cdot \text{mg}^{-1}$ $@1.5 \text{ V }$ RHE	$353.4 \text{ mA} \cdot \text{mg}^{-1}$	$0.5 M H_2SO_4$		Int. J. Hydrogen Energy 48 (2023) 5402-5412
Ir@WO _x NW	$\sqrt{2}$	$812 \text{ mA} \cdot \text{mg}_{\text{Ir}}^{-1}$ $@1.55 \text{ V }$ RHE	$812 \text{ mA} \cdot \text{mg}_{\text{Ir}}^{-1}$	$0.5 M H_2SO_4$	10.2 μ g _{Ir} /cm ²	Chem. Eng. J. 464 (2023) 142613
Ir- $Co3O4$	236	3343.37 mA \cdot mg _{Ir} $^{-1}$ $@1.53$ V _{RHE}	4477.7 $mA·mg_{Ir}^{-1}$	$0.5 M H_2SO_4$	0.018 mg _{Ir} /cm ²	Nat. Commun. 13 (2022) 7754
Amorphous Ir atomic clusters on IrO ₂ Nanoneedles	296	\sim 92 mA·mg ⁻¹ $@1.55 \text{ V }$ RHE	\sim 92 mA·mg ⁻¹	$1.0 M H_2SO_4$	0.25 mg/cm ²	J. Power Sources 524 (2022) 231069
Ir_xPb nanowire networks	307	$352 \text{ mA} \cdot \text{mg}^{-1}$ $@1.53$ V _{RHE}	$810.5 \text{ mA} \cdot \text{mg}^{-1}$	0.1 M HClO ₄		J. Mater. Chem. A 10 (2022) 11196-11204
$Ir_{0.7}W_{0.2}Sn_{0.1}$ O_x	236	722.7 mA \cdot mg $_{Ir}$ -1 $@1.53$ V _{RHE}		$0.5 M H_2SO_4$	0.3 mg/cm ²	Small 18 (2022) 2203365
IrO_x/Ti_4O_7	288	$372 \text{ mA} \cdot \text{mg}^{-1}$ $@1.55 \text{ V }$ RHE	$372 \text{ mA} \cdot \text{mg}^{-1}$	0.1 M HClO ₄	0.01 mg/cm ²	Catal. Today 403 (2022) $19 - 27$
$Ir_{0.16}Co_{0.84}O_x$	262	1032.16 mA \cdot mg ⁻¹ $@1.53 \text{ V}_{RHE}$		0.1 M HClO ₄	51.91 μ g/cm ²	Electrochim. Acta 432 (2022) 141199
$Ir-MnO2$	218	$766 \text{ mA} \cdot \text{mg}^{-1}$ $@1.53$ V _{RHE}		$0.5 M H_2SO_4$		Joule 5 (2021) 2164-2176
$IrO2-B$	$255-$ 292	803 to 2779 mA·mg· 1 @1.53 V_{RHE} 831.2 mA \cdot mg _{Ir} $^{-1}$	1523.2 to 5271.6 $mA·mg-1$	0.1 M HClO ₄	51 to 5.1 $\mu g_{Ir}/cm^2$	Sci. China Mater. 64 (2021) 2958-2966
Ir/CP	250	@1.525 V_{RHE} 6.8 A \cdot mg _{Ir} $^{-1}$ $@1.6$ V_{cell}		$0.5 M H_2SO_4$	53.9 μ g/cm ²	Chem. Eng. J. 420 (2021) 127696
IrO ₂ @TiN	236	$213 \text{ mA} \cdot \text{mg}^{-1}$ $@1.48 \text{ V}_{RHE}$	$767.7 \text{ mA} \cdot \text{mg}^{-1}$	$0.5 M H_2SO_4$		Mater. Chem. Front. 5 (2021) 8047-8055
Ir/B_4C	283	$1100 \text{ mA} \cdot \text{mg}^{-1}$ $@1.54$ V _{RHE}	1396.7 mA·mg ⁻¹	0.1 M HClO ₄	9.6 μ g/cm ²	J. Power Sources 512 (2021) 230506
La-Ir NF	263	$375 \text{ mA} \cdot \text{mg}^{-1}$ $@1.55 \text{ V}_{RHE}$	$375 \text{ mA} \cdot \text{mg}^{-1}$	0.1 M HClO ₄	0.2 mg/cm ²	J. Mater. Chem. A 8 (2020) 12518-12525
30Ir/Au/CP	318.7	440.5 $mA \cdot mg^{-1}$ $@1.9 V_{cell}$	$\sqrt{2}$	$0.5 M H_2SO_4$	0.008 mg/cm ²	Applied Catalysis B: Environmental 283 (2021)

Table S3. Mass activities of Ir-based OER electrocatalysts under acidic conditions reported recently.

119596

