Electronic Supplementary Information (ESI) for

Ultra-stretchable, self-recovery, notch-insensitive, selfhealable and adhesive hydrogel enabled by synergetic hydrogen and dipole-dipole crosslinking

Wanting Yuan^a, Yi He^a, Qianqian Liang^a, Hongyi Lv^a, Ziqi Wang^a, Haitao Wu^b, Jinrong Wu^b, Lijuan Zhao^a*, Yi Wang^a*

^a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
^b State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China

Corresponding author contact:

Dr. Lijuan Zhao College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China E-mail: lijuan_zhao@sicnu.edu.cn

Dr. Yi Wang College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China E-mail: wangyi2020@sicnu.edu.cn

This PDF file includes: Supplementary Table Supplementary Figure

Supplementary Table

Table S1 Composition of the AMA hydrogels.			
Samples	AM	MA	AN
	(g)	(g)	(g)
A-M _{3.5} -A ₀	30	3.5	0
A-M _{3.5} -A _{1.4}	30	3.5	1.4
A-M _{3.5} -A _{2.8}	30	3.5	2.8
A-M _{3.5} -A _{5.6}	30	3.5	5.6
$A-M_{3.5}-A_{11.2}$	30	3.5	11.2
$A-M_{3.5}-A_{16.8}$	30	3.5	16.8
$A-M_0-A_{1.4}$	30	0	1.4
$A-M_2-A_{1.4}$	30	2	1.4
A-M _{3.5} -A _{1.4}	30	3.5	1.4
$A-M_5-A_{1.4}$	30	5	1.4
$A-M_{6.5}-A_{1.4}$	30	6.5	1.4
$A-M_8-A_{1.4}$	30	8	1.4

Supplementary Figure

Fig. S1 Master curves of frequency dependence of G, G" and tan δ of the A-M_{3.5}-A_{1.4}, A-M₀-A_{1.4} and A-M_{3.5}-A₀ hydrogels.

Fig. S2 SAXS intensity distribution pattern of the A- $M_{3.5}$ - $A_{1.4}$, A- M_0 - $A_{1.4}$ and A- $M_{3.5}$ - A_0 hydrogels

Fig. S3 Tensile strength and toughness of the $A-M_{3.5}-A_0$ and $A-M_0-A_{1.4}$ hydrogels.

Fig. S4 Tensile stress-strain curve of the A-M0-A1.4 hydrogel.

Fig. S5 (a) Self-recovery performance of the A- $M_{3.5}$ -A_{1.4} hydrogel stained with red ink after stretching to 1200% strain. (b) The geometry of the notched sample.