Supplementary Information

Multilayered MoAlB@MBene using Mild Microwave-Assisted Etching and their Optical Properties

Madhurya Chandel^{1*}, Muhammad Abiyyu Kenichi Purbayanto¹, Dominik Kowal², Dorota Moszczyńska³, Anna Wójcik⁴, Muhammad Danang Birowosuto², Michael Naguib⁵, Agnieszka Maria Jastrzębska¹*

¹Faculty of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, 02-525 Warsaw, Poland

²Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland

³Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Poland

⁴Polish Academy of Sciences, Institute of Metallurgy and Materials Science, W. Reymonta 25, 30-059 Cracow, Poland

⁵Tulane University, Department of Physics and Engineering Physics, New Orleans, LA 70118, USA

*E-mail: madhurya.chandel@pw.edu.pl, agnieszka.jastrzebska@pw.edu.pl

Chemicals and Reagents Used

Hydrochloric acid (HCl) with 37 %(v/v) concentration from Merk; Sodium hydroxide (NaOH, 0.1 M), 30 %(v/v) water solution of hydrogen peroxide (H₂O₂) from chempur, double distilled water was used. Molybdenum boride (MoB) and aluminum (#325 mesh; 44 μ m) powders were purchased from Alfa Aesar for MoAlB synthesis. All the chemicals were used without further purification.

Synthesis of MAB phase (MoAlB)

The MoAlB MAB phase was synthesized using direct mixing of precursor powders i.e. Molybdenum boride (MoB) and aluminum (#325 mesh; 44 μ m) powders. The MoB and aluminum powders were mixed in a ratio of 1:1.2. After mixing these two powders, it was pressed and heated in a Turbula T2F mixer for 3 h at 56 rpm. For mixing media 10 mm yttria-stabilized zirconia balls were used. After that, mixed powders were pressed into 12 g pellets. It was heated at 750 °C for 2 h, then 1500 °C for another 2 h, at a heating rate of 10 °C/min in a tube furnace under an argon atmosphere (with flow rate 100 standard cm³/min, SCCM). The obtained solid samples were ultimately cooled to room temperature and ground down to #325 mesh.

Detailed protocol for the etching of Al from the MoAlB phase

MAB@MBene (Without pre-treatment)

Initially, 250 mg of MoAlB was added slowly into 20 mL of 0.6 M HCl solution with constant stirring, followed by sonication for 2 minutes. After that 20 μ l of H₂O₂ (30%) solution was added dropwise and closed the lid of the Teflon container. Once the microwave is fitted, the reaction starts as per the designed program (Program: temperature: 150 °C, reaction time 120 min (40 min each in 3 cycles), and microwave power: 480W). After completion, the supernatant was navy blue, and the precipitate was black. After five washing using centrifugation (3000 RPM for 4 min), the reaction mixture pH becomes 6. The precipitate was collected and used further for characterization.

Base-MAB@MBene (With NaOH pre-treatment)

Pretreatment: Firstly, 250 mg of MoAlB was added into 0.1 M NaOH and stirred for 2h, then washed with distilled water till pH became 6.

Microwave treatment: The washed precipitate was slowly transferred into 20 mL of 0.6 M HCl with constant stirring, followed by sonication for 2 min. After that, 250 μ l of H₂O₂ (30%) was added dropwise and closed the lid of the Teflon container. Once the microwave was fitted, the reaction started as per the designed program (Program: Temperature: 150 °C, reaction time 120 min (40 min each in 3 cycles), and microwave power 480 W). After completion, the supernatant was yellow, and the precipitate was black. After five washing using centrifugation (3000 RPM for 4 min), the reaction mixture pH becomes 6. The black precipitate was collected and used further for characterization.

Acid-MAB@MBene (With HCl pre-treatment)

Pretreatment: Initially, 250 mg of MoAlB was stirred in 0.1 M HCl for 2h, then washed with distilled water till pH became 6.

Microwave treatment: The washed precipitate was slowly transferred into 20 mL of 0.6 M HCl with constant stirring, followed by sonication for 2 min. After that, 250 μ l of H₂O₂ (30%) solution was added dropwise and closed the lid of the Teflon container. Once the microwave was fitted, the reaction started as per the designed program (Program: Temperature: 150 °C, reaction time 120 min (40 min each in 3 cycles), and microwave power 480 W). After completion, the supernatant was Yellow, and the precipitate was black. After five washing using centrifugation (3000 RPM for 4 min), the reaction mixture pH becomes 6 (measured using pH Paper). The black precipitate was collected and used further for characterization.

Figure S1. The Ψ and Δ at the incident angle of 45° of the representative sample (MAB@MBene)

Figure S2 XRF spectra of Al Kα peak for the supernatant after pre-treatment (a) 0.1 M NaOH and (b) 0.1 M HCl. Inset is the digital photograph of the respective reaction mixture.

Figure S3 TEM images and corresponding EDS of (a) MAB@MBene, (b) Base-MAB@MBene, and (c) Acid-MAB@MBene.

Figure S4 SEM images and elemental mapping of (a) MoAlB, (b) MAB@MBene, (c) Base-MAB@MBene, and (d) Acid-MAB@MBene. The circled area is a highlight of the accordion-like structure

Figure S5 FT-IR spectra of MoAlB, MAB@MBene, Base-MAB@MBene and Acid-MAB@MBene.

Figure S6. The estimated bandgap is based on the absorption spectra of (a) MoAlB, (b) MAB@MBene, (c) Base-MAB@MBene, and (d) Acid-MAB@MBene.

Figure S7. a) Refractive index (*n*) and b) extinction coefficients (*k*) of MoAlB, MAB@MBene,

Base-MAB@MBene, and Acid-MAB@MBene.

Figure S8 a) The photoluminescence measurements of MAB@MBene, Base-MAB@MBene and Acid-MAB@MBene. Steady-state and time-resolved photoluminescence measurements of

b) MAB@MBene, c) Base-MAB@MBene, and d) Acid-MAB@MBene with emission above 600 nm. All measurements were excited at 266 nm and room temperature.

	Element	Weight % [± Error]	Atom % [± Error]
	B 1.25 ± 0.10 A1 4.30 ± 0.06		2.46 ± 0.19
			4.87 ± 0.07
	Si	77.05 ± 0.21	86.93 ± 0.23
	Мо	17.40 ± 0.15	5.74 ± 0.05

Table S1. Results of the Elemental composition of the MoAlB sample using EDS

Mo:Al:B atomic ratio 1: 0.85: 0.43

Table S2. Results of the Elemental composition of the MAB@MBene sample using EDS

Element	Weight % [± Error]	Atom % [± Error]		
В	4.24 ± 0.12	8.53 ± 0.24		
Al	3.93 ± 0.06	4.50 ± 0.07		
Si	68.98 ± 0.19	79.30 ± 0.22		
Mo	22.85 ± 0.22	7.67 ± 0.07		

Mo:Al:B atomic ratio 1: 0.96: 1.11

Table S3. Results of the Elemental composition of the Base-MAB@MBene sample using

 EDS

Element	Weight % [± Error]	Atom % [± Error]		
B 2.26 ± 0.11		4.82 ± 0.23		
Al	2.11 ± 0.06	3.22 ± 0.08		
Si	67.78 ± 0.19	82.04 ± 0.23		
Mo	27.85 ± 0.18	9.92 ± 0.06		

Mo:Al:B atomic ratio 1: 0.32: 0.48

Table S4. Results of the Elemental composition of the Acid-MAB@MBene sample using

 EDS

Element	Weight % [± Error]	Atom % [± Error]	
В	2.75 ± 0.22	5.14 ± 0.42	
Al	1.36 ± 0.14	2.52 ± 0.16	
Si	83.92 ± 0.40	89.60 ± 0.42	
Мо	11.97 ± 0.44	5.44 ± 0.14	

Mo:Al:B atomic ratio 1: 0.46: 0.94

Table S5. XPS peak component fitti	ing analysis of MAB@MBene.
------------------------------------	----------------------------

Element	Element at%	Binding energy	Component	Component at%
		(eV)	name	
Mo 3d 5/2	0.7	231.3 (234.5)	Mo ₂ O ₅	0.5
(3d 3/2)		232.5 (235.7)	MoO ₃	0.2
Al 2p	0.1	74.2	Al ₂ O ₃	0.1
B 1s	0.2	192.8	B ₂ O ₃	0.2

Table S6. XPS peak component fitting analysis of Base-MAB@MBene.

Element	Element at%	Binding energy	Component	Component at%
		(eV)	name	
Mo 3d 5/2	1.3	231.1 (234.3)	MoCl ₅ /Mo ₂ O ₅	0.5
(3d 3/2)		232.5 (235.8)	MoO ₃	0.8
Al 2p	0.5	74.5	Al ₂ O ₃	0.1
		75.4	AlO(OH)	0.3
		76.4	AlCl ₃	0.1
B 1s	0.4	193.0	B ₂ O ₃	0.4

Table S7.	XPS peak	component	fitting a	nalvsis of	Acid-MAB@MBene.
	1	1		•	\bigcirc

Element Element at%		Binding	Component name	Component	
		energy (eV)		at%	
Mo 3d 5/2	0.9	230.7 (233.9)	MoO ₂	0.2	
(3d 3/2)		232.1 (235.3)	MoO ₃	0.7	
Al 2p	0.3	73.9	Al ₂ O ₃	0.1	
		76	AlCl ₃	0.2	
B 1s	-	193.1	B ₂ O ₃	-	

Samples	τ1 (μs)	C ₁ (%)	$\tau_2(\mu s)$	C ₂ (%)	τ ₃ (μs)	C ₃ (%)	$\begin{array}{ c c } \tau_{avg} \\ (ns) \end{array}$
MAB@MBene	0.9	77	2.9	20	25.7	3	2.0
Base-	0.8	62	2.3	32	13.4	6	2.1
MAB@MBene							
Acid-	0.9	82	2.9	15	24.2	3	1.9
MAB@MBene							

Table S8. Extracted parameters from the fitting of TRPL curves

Reference

(1) Li, X.; Cui, H.; Zhang, R. First-Principles Study of the Electronic and Optical Properties of a New Metallic MoAlB. *Sci Rep* **2016**, *6* (1), 39790.