Supplementary information

Structuring 3D-Printed Polypropylene Composites with Vertically Aligned Mesophase Pitch-based Carbon Fibers for Enhanced

Through-Plane Thermal Conductivity and Mechanical Properties

Bowen Fang^a, Yan Wang^a*, Hongjia Fan^a, Yumei Gong^a, Jing Guo^a, Zhiguo Wang^b,

Jiazhuang Xu^b, Shengfa Wang^c

^a School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
 ^b College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China

^c DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China

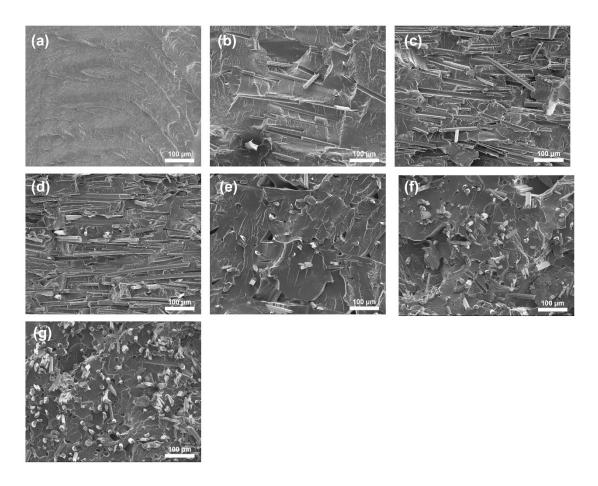

Figure S1. The CF/PP filaments with a uniform diameter of 1.75mm.

Figure S2. A $120 \times 120 \times 1.5$ mm PP substrate.

Figure S3. DR-III thermal conductivity instrument with heat-flow method.

Figure S4. (a) Cross-sectional morphology of PP. (b-d) Cross-sectional morphology of of H-CF/PP with CF contents of 4, 9, and 15 vol%, respectively. (e-g) Cross-sectional morphology of V-CF/PP with CF contents of 4, 9, and 15 vol%, respectively.

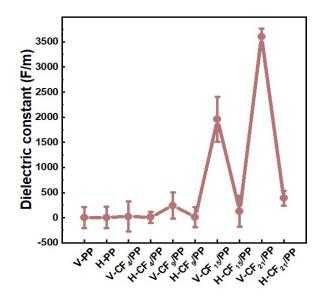


Figure S5. The dielectric constant of 3D printed CF/PP composites.

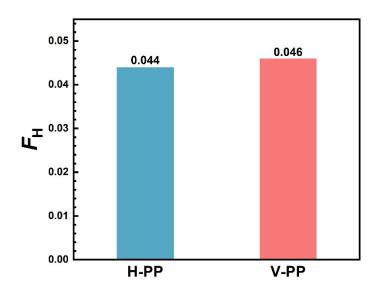


Figure S6. The $F_{\rm H}$ of CF/PP composites from 2D WAXD patterns.

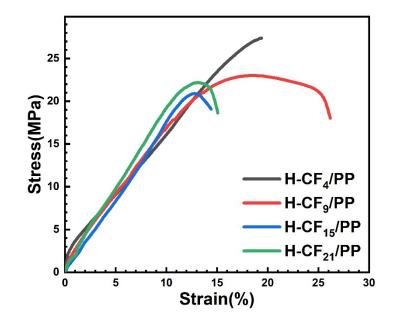
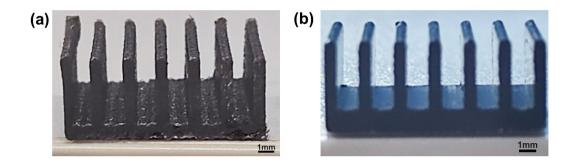
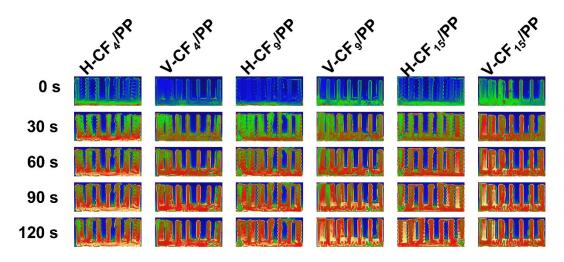




Figure S7. Stress-strain curves of H-CF/PP composites with varying CF loading.

Figure S8. Digital photos of different printing direction of CF/PP composites: (a) V- CF_{21}/PP and (b) commercialized product.

Figure S9. Infrared thermography of 3D-CF/PP composite material with varying CF loading.

Parameters	Value	
Print nozzle diameter (mm)	0.4	
Layer height (mm)	0.4	
Nozzle temperature (°C)	200	
Printing bed temperature (°C)	70	
Feed rate (mm/s)	30	
Infill pattern	Linear infill pattern	
Print infill (%)	100	

Table S1 FDM parameters used for the 3D printing of CF/PP scaffold.

Table S2 Values of melting temperatures, melting enthalpies and degree of crystallinitytemperatures for CF/PP composites obtained by DSC analysis.

Sample	Melting temperature (°C)	Enthalpy (J/g)	Degree of crystallinity (%)
PP	149.09	61.62	29.77
CF ₄ /PP	148.74	52.25	25.24
CF ₉ /PP	147.16	46.04	22.24
CF ₁₅ /PP	147.43	44.46	21.48
CF ₂₁ /PP	151.19	39.96	19.30

Sample	Initial decomposition temperature (°C)	Peak temperature (°C)	Residual CF rate (%)
PP	392.02	432.50	1.36
CF ₄ /PP	421.94	450.00	7.78
CF ₉ /PP	431.45	455.83	26.10
CF ₁₅ /PP	437.16	461.67	31.20
CF ₂₁ /PP	437.58	461.68	39.80

Table S3 Values of initial decomposition temperature, peak temperature and residualCF rate for CF/PP composites obtained by thermogravimetric analysis.