Supporting Information

$Controllable\ topological\ phase\ transition\ via\ ferroelectric-paraelectric\ switching$ $in\ ferromagnetic\ single-layer\ M_IM_{II}Ge_2X_6\ family$

Jingbo Bai,¹ Tie Yang,¹ Zhenzhou Guo,^{3*} Ying Liu,² Yalong Jiao,² Weizhen Meng,^{2*}
Zhenxiang Cheng^{3*}

- 1. School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
- 2. College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China.
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500,
 Australia.

*Email: zg855@uowmail.edu.au, mengweizhen@hebtu.edu.cn, cheng@uow.edu.au

Table SI. Wyckoff sites of atoms in ferroelectric (FE) and paraelectric (PE) phases of 11 2D multiferroic materials.

Materials	PE	FE
		S1 (3d) (0.33108,0.04411,0.45785)
	S (61) (0.32983, 0.03906, 0.42971)	S2 (3d) (0.98402,0.66965,0.53975)
D I G G	Ir (1b) (0.00000, 0.00000, 0.50000)	Ir (1a) (0.00000,0.00000,0.49884)
ReIrGe ₂ S ₆	Re (1f) (0.66667, 0.33333, 0.50000)	Re (1c) (0.66667,0.33333,0.49755)
	Ge (2h) (0.33333, 0.66667, 0.55602)	Ge (1b) (0.33333,0.66667,0.515790)
		Ge (1b) (0.33333,0.66667,0.43195)
	G (G) (0 2222 (0 2412 G) 4250 ()	Se1 (3d) (0.32997,0.04946,0.45454)
	S (61) (0.32936,0.04187,0.42584)	Se2 (3d) (0.98100,0.66994,0.54285)
	Ir (1b) (0.00000,0.00000,0.50000)	Ir (1a) (0.00000,0.00000,0.49940)
ReIrGe ₂ Se ₆	Re (1f) (0.66667,0.33333,0.50000)	Re (1c) (0.66667,0.33333,0.49805)
	Ge (2h) (0.33333,0.66667,0.55680)	Ge (1b) (0.33333,0.66667,0.51518)
		Ge (1b) (0.33333,0.66667,0.43213)
		Se1 (3d) (0.33245,0.04762,0.45279)
	Se (61) (0.33813,0.04085,0.42319)	Se2 (3d) (0.98008,0.65584,0.54483)
	A1 (1b) (0.00000,0.00000,0.50000)	A1 (1a) (0.00000,0.00000,0.50299)
ReAlGe ₂ Se ₆	Re (<i>If</i>) (0.66667,0.33333,0.50000)	Re (1c) (0.66667,0.33333,0.49761)
	Ge (2h) (0.33333,0.66667,0.55641)	Ge (1b) (0.33333,0.66667,0.51383)
		Ge (1b) (0.33333,0.66667,0.42964)
		Se1 (3d) (0.37126,0.03889,0.42896)
	S (61) (0.37520,0.03798,0.43527)	Se2 (3d) (0.96119,0.62884,0.55843)
	Bi (1b) (0.00000,0.00000,0.50000)	Bi (1a) (0.00000,0.00000,0.49365)
ReBiGe ₂ Se ₆	Re (1f) (0.66667,0.33333,0.50000)	Re (1c) (0.66667,0.33333,0.49372)
	Ge (2h) (0.33333,0.66667,0.54659)	Ge (1b) (0.33333,0.66667,0.59437)
		Ge (1b) (0.33333,0.66666,0.39302)
		Se1 (3d) (0.32950,0.04877,0.45425)
	Se (61) (0.32955,0.04165,0.42522)	Se2 (3d) (0.98025,0.66870,0.54304)
	Rh (1b) (0.00000,0.00000,0.50000)	Rh (1a) (0.00000,0.00000,0.49960)
ReRhGe ₂ Se ₆	Re (1f) (0.66667,0.33333,0.50000)	Re (1c) (0.66667,0.33333,0.49818)
	Ge (2h) (0.33333,0.66667,0.55699)	Ge (1b) (0.33333,0.66667,0.51512)
		Ge (1b) (0.33333,0.66667,0.43215)
		S1 (3d) (0.35381,0.05032,0.45815)
	S (61) (0.36300,0.04025,0.43634)	S2 (3d) (0.97866,0.62496,0.53792)
D	Sn (1b) (0.00000,0.00000,0.50000)	Sn (1a) (0.00000,0.00000,0.50178)
ReSnGe ₂ S ₆	Re (1f) (0.66667,0.33333,0.50000)	Re (1c) (0.66667,0.33333,0.49656)
	Ge (2h) (0.33333,0.66666,0.54862)	Ge (1b) (0.33333,0.66667,0.51280)
		Ge (1b) (0.33333,0.66667,0.43757)
	G ((1) (0.22002 0.0275(0.42005)	S1 (3d) (0.33116,0.03889,0.45833)
	S (61) (0.32882,0.03756,0.43995)	S2 (3d) (0.98425,0.67090,0.53951)
TcIrGe ₂ S ₆	Ir (1b) (0.00000,0.00000,0.50000)	Ir (1a) (0.00000,0.00000,0.49871)
1c11Ge ₂ S ₆	Tc (1f) (0.66667,0.33333,0.50000)	Tc (1c) (0.66667,0.33333,0.49735)
	Ge (2h) (0.33333,0.66667,0.54705)	Ge (1b) (0.33333,0.66667,0.51617)

		Ge (1b) (0.33333,0.66667, 0.43119)
		Se1 (3d) (0.32970,0.04649,0.45088)
	Se (61) (0.32841,0.04052,0.42790)	Se2 (3d) (0.98113,0.67074,0.54755)
ToleCo Co	Ir (1b) (0.00000,0.00000,0.50000)	Ir (1a) (0.00000,0.00000,0.49993)
TcIrGe ₂ Se ₆	Tc (1f) (0.66667,0.33333,0.50000)	Tc (1c) (0.66667,0.33333,0.49834)
	Ge (2h) (0.33333,0.66667,0.55444)	Ge (1b) (0.33333,0.66667,0.51762)
		Ge (1b) (0.33333,0.66667,0.42577)
		S1 (3d) (0.32970,0.04649,0.45088)
	S (61) (0.32375,0.03188 ,0.42803)	S2 (3d) (0.98113,0.67074,0.54755)
WIrGe ₂ S ₆	Ir (1b) (0.00000,0.00000,0.50000)	Ir (1a) (0.00000,0.00000,0.49993)
WIIGe ₂ S ₆	W (1f) (0.66667,0.33333,0.50000)	W (1c) (0.66667,0.33333,0.49834)
	Ge (2h) (0.33333,0.66667,0.55453)	Ge (1b) (0.33333,0.66667,0.51762)
		Ge (1b) (0.33333,0.66667,0.42577)
		Se1 (3d) (0.34337,0.01809,0.45481)
	Se (61) (0.33265,0.03360,0.42464)	Se2 (3d) (0.95702,0.66433,0.54672)
WAlGe ₂ Se ₆	Al (1b) (0.00000,0.00000,0.50000)	Al (1a) (0.00000,0.00000,0.49776)
WAIGe2Se6	W (1f) (0.66667,0.33333,0.50000)	W (1c) (0.66667,0.33333,0.50068)
	Ge (2h) (0.33333,0.66667,0.55466)	Ge (1b) (0.33333,0.66667,0.57297)
		Ge (1b) (0.33333,0.66667,0.48708)
		Te1 (3d) (0.32956,0.05872,0.44866)
	Te (61) (0.32964,0.04144,0.42129)	Te2 (3d) (0.98337,0.67228,0.54713)
WPtGe ₂ Te ₆	Pt (1b) (0.00000,0.00000,0.50000)	Pt (1a) (0.00000,0.00000,0.49941)
WFIGE2166	Re (1f) (0.66667,0.33333,0.50000)	W (1c) (0.66667,0.33333,0.49818)
	Ge (2h) (0.33333,0.66667,0.55828)	Ge (1b) (0.33333,0.66666,0.51568)
		Ge (1b) (0.33333,0.66667,0.43633)

Table SII. Lattice constants of ferroelectric (FE) and paraelectric (PE) phases for 11 2D multiferroic materials.

Materials	PE	FE	
ReIrGe ₂ S ₆	a=b=6.11 Å	a=b=6.26 Å	
ReIrGe ₂ Se ₆	a=b=6.44 Å	a=b=6.57 Å	
ReAlGe ₂ Se ₆	a=b=6.43 Å	a=b=6.52 Å	
ReBiGe ₂ Se ₆	a=b=6.37 Å	a=b=6.51 Å	
ReRhGe ₂ Se ₆	a=b=6.42 Å	a=b=6.55 Å	
ReSnGe ₂ S ₆	a=b=6.33 Å	a=b=6.45 Å	
TcIrGe ₂ S ₆	a=b=6.08 Å	a=b=6.23 Å	
TcIrGe ₂ Se ₆	a=b=6.41 Å	a=b=6.55 Å	

WIrGe ₂ S ₆	a=b=6.08 Å	a=b=6.29 Å	
WAlGe ₂ Se ₆	a=b=6.47 Å	a=b=6.55 Å	
WPtGe ₂ Te ₆	a=b=7.03 Å	a=b=7.09 Å	

Table SIII. Ferroelectric transition barriers for the SL $M_IM_{II}Ge_2X_6$ family.

Materials	Energy barrier (eV)	Materials	Energy barrier (eV)	
ReIrGe ₂ S ₆	0.62	ReIrGe ₂ Se ₆	0.23	
TcIrGe ₂ S ₆	0.49	ReRhGe ₂ Se ₆	0.19	
ReAlGe ₂ Se ₆	0.07	WPtGe ₂ Te ₆	0.16	
WIrGe ₂ S ₆	0.77	WAlGe ₂ Se ₆	0.22	
ReSnGe ₂ Se ₆	0.20	ReBiGe ₂ Se ₆	0.24	

Table SIV. Magnetic ground states of ferroelectric (FE) phase for 11 2D multiferroic materials.

Materials	FM (eV)	AFM1 (eV)	AFM2 (eV)
ReIrGe ₂ S ₆	-226.32145395	-226.14374067	-226.14374197
ReIrGe ₂ Se ₆	-222.62311261	-222.15396648	-222.14701290
ReAlGe ₂ Se ₆	-204.84004770	-204.45416126	-204.45347128
ReBiGe ₂ Se ₆	-204.84004770	-204.45416126	-204.45347128
ReRhGe ₂ Se ₆	-195.76309287	-195.51162751	-195.51162879
ReSnGe ₂ S ₆	-210.25680034	-210.12374933	-210.12349296
TcIrGe ₂ S ₆	-187.83463627	-187.57906846	-187.57906987
TcIrGe ₂ Se ₆	-203.81887192	-203.68401305	-203.68445755
WIrGe ₂ S ₆	-232.32182864	-232.13392289	-232.13392147
WAlGe ₂ Se ₆	-198.86190839	-198.63532164	-198.63591126
WPtGe ₂ Te ₆	-205.93188200	-205.54534612	-205.54534552

Table SV. Fractional corner charges of SL-ReBiGe $_2S_6$, SL-WIrGe $_2S_6$, SL-TcIrGe $_2S_6$, SL-TcIrGe $_2S_6$, and SL-ReIrGe $_2S_6$.

2D multiferroic materials		Spin-up			Spin-down		
		#K ³ _{2↑}	#Γ _{2↑}	$Q_{c\uparrow}^{(3)}$	#K ³ _{2↓}	$\#\Gamma_{2\downarrow}^{3}$	$Q_{c\downarrow}^{(3)}$
ReBiGe ₂ S ₆	PE	14	15	2e/3	-	-	-
	FE	-	-	-	-	-	-
WIrGe ₂ S ₆	PE	-	-	-	12	13	2e/3
	FE	-	-	-	12	13	2e/3
TcIrGe ₂ S ₆	PE	13	15	e/3	-	-	-
	FE	13	15	e/3	13	14	2e/3

TalrCa Sa	PE	14	15	2e/3	-	-	-
TcIrGe ₂ Se ₆	FE	14	15	2e/3	12	13	2e/3

ReIrGe ₂ S ₆	K ₁	K_2	K ₁ '	K ₂ '	Qconner
Spin-up	-2	0	-	-	e/3
Spin-dn	-2	0	-	-	e/3

Fig. S 1 Electronic band structures of PE and FE phases for ReBiGe₂S₆ and ReAlGe₂Se₆.

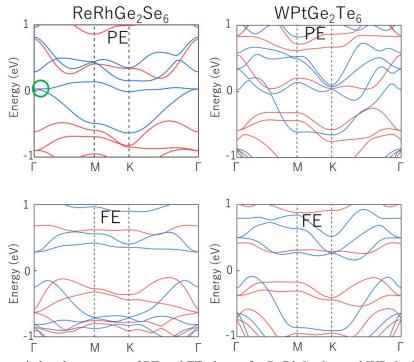


Fig. S 2 Electronic band structures of PE and FE phases for ReRhGe₂Se₆ and WPtGe₂Te₆.

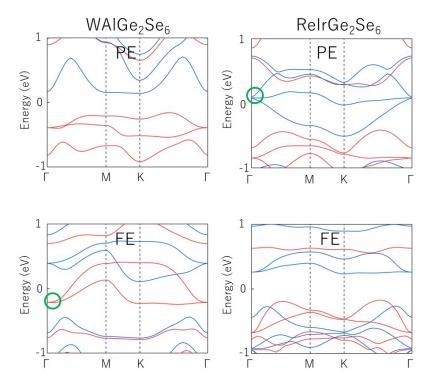


Fig. S 3 Electronic band structures of PE and FE phases for WAlGe₂Se₆ and ReIrGe₂Se₆.

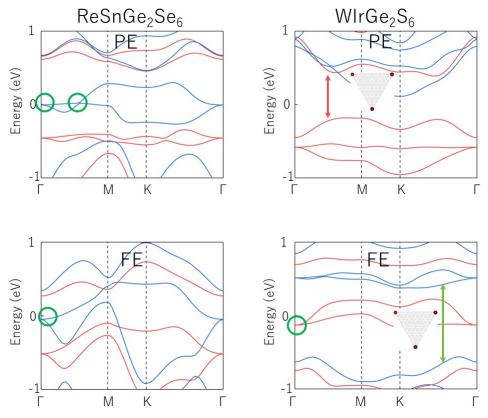
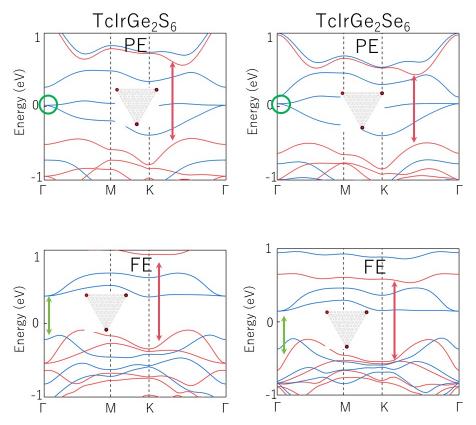
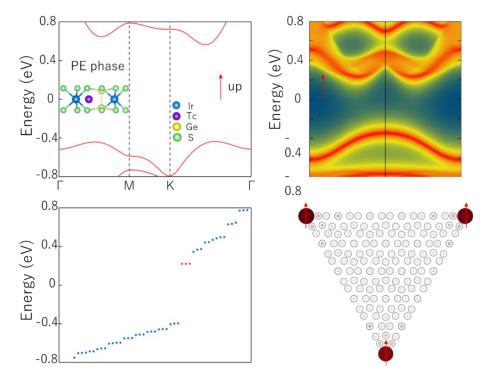
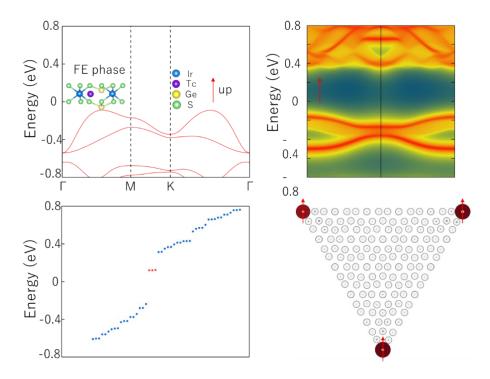
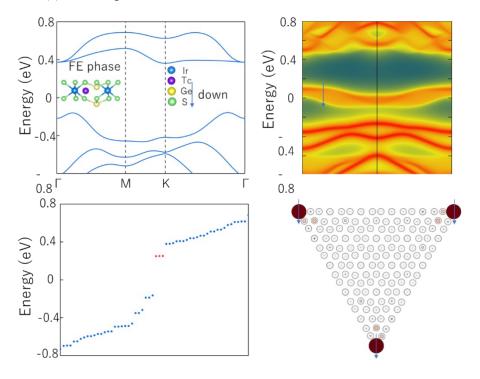
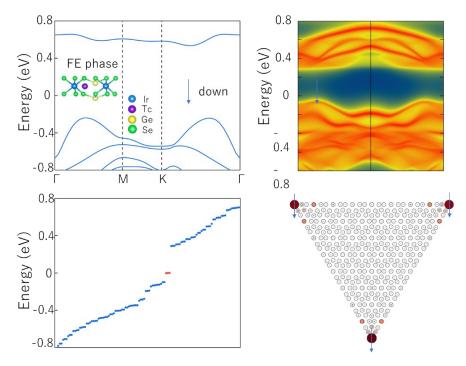
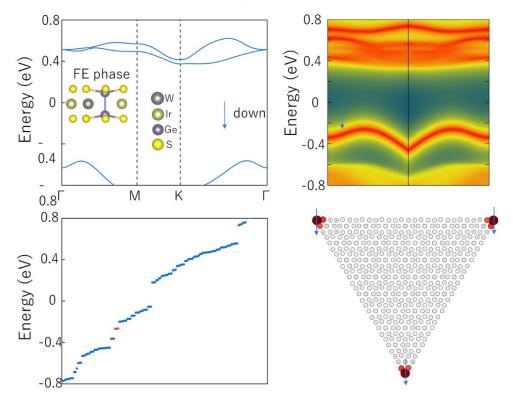


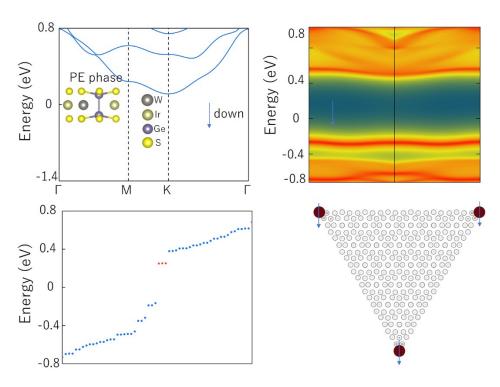
Fig. S 4 Electronic band structures of PE and FE phases for ReSnGe₂Se₆ and WIrGe₂S₆.

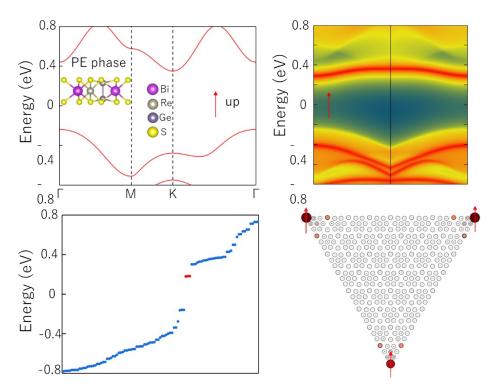




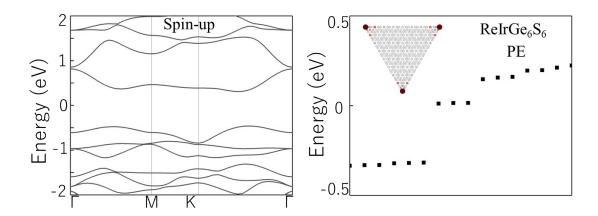

Fig. S 5 Electronic band structures of PE and FE phases for TcIrGe₂Se₆ and TcIrGe₂S₆.


Fig. S 6 (a) Electronic band structures of PE phases in spin-up channel for $TcIrGe_2S_6$. (b) Projected spectrum in spin-up channel for $TcIrGe_2S_6$. (c) The corresponding energy levels in spin-up channel for $TcIrGe_2S_6$. (d) The charge distribution of the finite-sized nanodisks.


Fig. S 7 (a) Electronic band structures of FE phases in spin-up channel for $TcIrGe_2S_6$. (b) Projected spectrum in spin-up channel for $TcIrGe_2S_6$. (c) The corresponding energy levels in spin-up channel for $TcIrGe_2S_6$. (d) The charge distribution of the finite-sized nanodisks.


Fig. S 8 (a) Electronic band structures of FE phases in spin-down channel for TcIrGe₂S₆. (b) Projected spectrum in spin-down channel for TcIrGe₂S₆. (c) The corresponding energy levels in spin-down channel for TcIrGe₂S₆. (d) The charge distribution of the finite-sized nanodisks.


Fig. S 9 (a) Electronic band structures of FE phases in spin-down channel for TcIrGe₂Se₆. (b) Projected spectrum in spin-down channel for TcIrGe₂Se₆. (c) The corresponding energy levels in spin-down channel for TcIrGe₂S₆. (d) The charge distribution of the finite-sized nanodisks.


Fig. S 10 (a) Electronic band structures of FE phases in spin-down channel for $WIrGe_2S_6$. (b) Projected spectrum in spin-down channel for $WIrGe_2S_6$. (c) The corresponding energy levels in spin-down channel for $WIrGe_2S_6$. (d) The charge distribution of the finite-sized nanodisks.

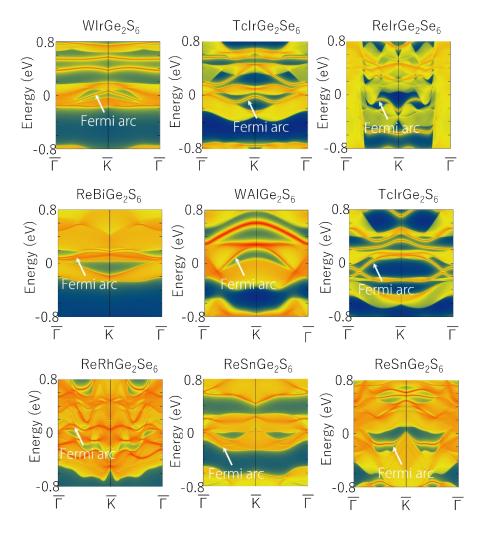

Fig. S 11 (a) Electronic band structures of PE phases in spin-down channel for WIrGe $_2$ S₆. (b) Projected spectrum in spin-down channel for WIrGe $_2$ S₆. (c) The corresponding energy levels in spin-down channel for WIrGe $_2$ S₆. (d) The charge distribution of the finite-sized nanodisks.

Fig. S 12 (a) Electronic band structures of PE phases in spin-up channel for ReBiGe₂S₆. (b) Projected spectrum in spin-up channel for ReBiGe₂S₆. (c) The corresponding energy levels in spin-down channel for ReBiGe₂S₆. (d) The charge distribution of the finite-sized nanodisks.

Fig. S 13 (a) Electronic band structures of PE phases in spin-up channel for ReIrGe₂S₆. (b)The corresponding energy levels in spin-up channel for ReIrGe₂S₆, and the charge distribution of the finite-sized nanodisks.

Fig. S 14. The band projections along the (100) direction for the M_IM_{II}Ge₂X₆ family with Weyl points. Among them, the last two band projections are the edge states of PE and FE phases for ReSnGe₂S₆.