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Figure S19. (a) Representative force/width vs. displacement curves for the 180-degree peel tests 
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Gaussian process-based machine learning model 

We applied the Gaussian process from Python and scikit-learn to extrapolate the relationship 

between the stretch of the sample and its color in XY color space. Gaussian process is a regression 

method that turns discrete data with uncertainty into a collection of continuous random variables 

such that the joint distribution of every finite subset of random variables is multivariate Gaussian, 

whose mean and covariance are determined by the kernels. We chose the kernel to be the linear 

combination of RBF kernel and Gaussian white noise kernel and tuned the parameters of the kernel 

to maximize the marginal likelihood. Based on the probability distribution of the random variables, 

we evaluated the relationship between stretch and color with appropriately estimated uncertainty. 

The code script used is attached below,

# install packages and data

from sklearn.gaussian_process import GaussianProcessRegressor

from sklearn.gaussian_process.kernels import RBF, WhiteKernel

from sklearn.gaussian_process.kernels import Matern

import numpy as np

X_train = 

np.array([0.332479005,0.495598305,0.404865431,0.195275658,0.269449602]).reshape(-1, 1)

Y_train = 

np.array([0.312865344,0.452977701,0.231988688,0.197569236,0.36189377]).reshape(-1, 1)

t_train = np.array([0.00,1.00,1.50,2.00,2.50]).reshape(-1, 1)

t = np.linspace(0, 2.5, 100, endpoint=True).reshape(-1, 1)

# build up the model

kernel = 1*RBF(length_scale=1e1, length_scale_bounds=(1e-2, 1)) + WhiteKernel(

    noise_level=5e-4, noise_level_bounds=(1e-5, 5e-4)

)

gpr1 = GaussianProcessRegressor(kernel=kernel, alpha=0.0)
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gpr1.fit(t_train, X_train)

X_mean, X_std = gpr1.predict(t, return_std=True)

gpr2 = GaussianProcessRegressor(kernel=kernel, alpha=0.0)

gpr2.fit(t_train, Y_train)

Y_mean, Y_std = gpr2.predict(t, return_std=True)

import matplotlib.pyplot as plt

_ = plt.title(

    f"Initial: {kernel}\nOptimum: {gpr1.kernel_}\nLog-Marginal-Likelihood: "

    f"{gpr1.log_marginal_likelihood(gpr1.kernel_.theta)}",

    fontsize=8,

)

plt.plot(t, X_mean, "-", ms=5, label="mean")

plt.fill_between(t[:,0], X_mean[:,0] + X_std, X_mean[:,0] - X_std, alpha=0.4, label="std")

plt.plot(t_train,X_train,"o",label="data")

plt.legend();

_ = plt.title(

    f"Initial: {kernel}\nOptimum: {gpr2.kernel_}\nLog-Marginal-Likelihood: "

    f"{gpr2.log_marginal_likelihood(gpr2.kernel_.theta)}",

    fontsize=8,

)

plt.plot(t, Y_mean, "-", ms=5, label="mean")

plt.fill_between(t[:,0], Y_mean[:,0] + Y_std, Y_mean[:,0] - Y_std, alpha=0.4, label="std")

plt.plot(t_train,Y_train,"o",label="data")

plt.legend();

ax = plt.axes(projection='3d')

ax.scatter3D(X_train[:,0], Y_train[:,0], t_train[:,0])
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ax.plot3D(X_mean[:,0], Y_mean[:,0], t[:,0], 'gray')

ax.view_init(10, 60)

Molecular dynamic stimulation

Classical molecular dynamics simulation (CMD)

The cellulose Iβ crystallite was constructed according to the crystallographic vector.2 The PAM 

molecules with 20 repetition unit were made by chamm-gui, polymer builder.3 In addition, the 

configuration of complex structure was built by using PACKMOL.4 Visualization and analysis of 

MD trajectories were carried out with the VMD package (version 1.9.3).5 All the MD simulations 

described herein were conducted by using Gromac,6 version 2021.6, with the CHARMM36 Force 

Field for carboxylate and PAM molecules and TIP3P water model3.7,8 Firstly, all the 

configurations were undergone energy minimization by using both steep descents and followed 

conjugated gradient methods. The process was carried out in NPT ensemble at 303.15 K and 1 bar 

ambient pressure for 1 ns simulation to equilibrate. Subsequently, the production simulation was 

carried out in NPT ensemble for another 100 ns. During all the simulations, the particle mesh 

Ewald approach was used to evaluate long-range electrostatic interaction. A real space cutoff of 

1.2 nm and Lennard-Jones interaction cutoff of 1.2 nm was used. The Potential-Shift-Verlet 

scheme and force-switch function were used to modify the electrostatic interaction and Lennard-

Jones interaction reach the smooth transition effect at the cutoff. 7,8 Gmx utility was used to analyze 

the hydrogen bonds and non-bonded interaction. The cut-off criteria to determine the hydrogen 

bonds is 30 degree for angle and 0.35 nm for distance.

Non-covalent interaction calculation

To gain more details of non-covalent interaction, Symmetry-Adapted Perturbation Theory (SAPT) 

was used to analyze the interaction energy between the molecules used in the previous CMD. All 

the structures (including cellulose, water, and PAM molecules) herein were optimized by using 

Orca (Version 5.03)9 and followed by frequency analysis to ensure that all the molecular 

configurations have no imaginary frequency. Geometry optimization, single frequency analysis, 

single point energy were calculated under B3LYP function,10 and def2-TZVP basis set. 

Subsequently, the energy decomposition analysis based on SAPT was calculated by using PSI4 

package,11 version 1.4. The energy decomposition contains electrostatic interaction, dispersion 
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interaction, induction interaction, and exchange repulsion interaction, which was calculated under 

SAPT2+(3)δMP2/aug-cc-pVTZ method. The SAPT script analysis were generated by using 

Multiwfn program (version: 3.8 dev).12 All the visualization were done by using VMD (version 

1.93).
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Figure S1. The change of number of hydrogen bonds of varied systems within 100 ns.
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Figure S2. Typical tensile stress-strain curves of g-PAM/CNF hydrogels with varied CNF 
contents
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Figure S3. Enhancement factor comparison of different hydrogel systems, using pure PAM 
hydrogels as reference.
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Figure S4. Typical tensile stress-strain curves of hydrogels with varied components.
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Figure S5. Swelling kinetic curves of PAM hydrogel soaking inside water and glucose/CNF 
solution bath
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Figure S6. Typical tensile stress-strain curves of hydrogels fabricated by post swelling method.



S13

Figure S7. Tensile curve of notched g-PAM/CNF hydrogel sample and testing photo
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Figure S8. Mechanical properties of pristine PAM-gelatin double network hydrogels and after 
being strengthened by multiscale hydrogen bonding strategy, including (a) Tensile stress-strain 
curves; (b) Stress; (c) Strain; and (d) Work of fracture.
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Figure S9. Mechanical properties of pristine PVA hydrogel and after being strengthened by 
multiscale hydrogen bonding strategy; including (a) Tensile stress-strain curves; (b) Stress; (c) 
Strain; and (d) Work of fracture.
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Figure S10. (a) EIS Nyquist curves of varied hydrogel systems and (b) calculated ionic 
conductivity of different hydrogel systems
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Figure S11. (a) EIS Nyquist curves of g-PAM/CNF hydrogels at 25 and -8 oC (b) ionic 
conductivity value of g-PAM/CNF hydrogels at 25 and -8 oC 
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Figure S12. Digital photos presenting the appearance and mechanical properties change for 
PAM and g-PAM/CNF hydrogels at - 8 oC;
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Figure S13. DSC profiles for a series of hydrogel systems
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Figure S14. 1H NMR spectra for a series of hydrogel systems
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Figure S15. Digital photos demonstrating the appearance change of PAM and g-PAM/CNF 
hydrogels after being exposed to ambient conditions for 48 hrs



S22

Figure S16. Typical tensile stress-strain curves of g-PAM/CNF alcogels curves with different 
CNF contents
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Figure S17. Optical microscopic photos demonstrating the color change of g-PAM/CNF alcogels 
under different strains (under polarizer)
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Figure S18 a&b Machine learning models for building continuous relationship among CIE X, Y 
value, and corresponding strain with specified error bar.
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Figure S19. (a) Representative force/width vs. displacement curves for the 180-degree peel tests 
of various hydrogels; (b) corresponding calculated interfacial toughness value (the inserted photo 
showing the strong adhesion between g/PAM-CNF hydrogel and porcine skin).
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Figure S20. EMG signal recorded by electrodes without hydrogel
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