
1

Supplementary Materials

Multifunctional UV Photodetect-memristors Based on Area Selective 

Fabricated Ga2S3/graphene/GaN Van der Waals Heterojunctions 
Zhengliang Lin,a Junrui Chen,a Zhuohang Zheng,b  Quanguang Lai,a Zhiqi Liu,a Liwei 

Liua, Jiaying Xiaoa and Wenliang Wanga, *
aSchool of Materials Scicence and Engineering, South China University of Technology, 

Guangzhou, 510640, China
bSchool of Computer Science and Engineering, South China University of Technology, 

Guangzhou, 510640 China

*Corresponding author email: wenliangwang@scut.edu.cn

Fig. S1. SEM images of (a) high- and (c) low-magnification after area selective deposition (ASD). 
(b) SEM image of parameter modified Ga2S3 grown on graphene. (d) Raman mapping of graphene 
region after ASD.

Area Selective Deposition Simulation
Area selective deposition (ASD) is a very valuable and practical way to fabricate chips 

and has drawn lots of attention. This work realized high quality ASD by introducing 

Supplementary Information (SI) for Materials Horizons.
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graphene interlayer, which directly skip the procedure of mask and lithography to 

reduce the total cost. In this section, the mechanism of ASD was studied systematically. 

Previous reports indicate that the process of growing 2D crystals on another one with 

similar lattice structure, where graphene and Ga2S3 are both hexagonal in this case, is 

more likely to be reproducible, energetically favorable, seamless stacking and cross 

growth1. While on the surface of GaN material, due to the existence of unsaturated 

bonds, the epitaxial mode is mostly island combination mode, and the precursor tends 

to cluster together and desorb at a low precursor concentration, making it difficult to 

form a continuous two-dimensional film2. Therefore, the thermaldynamic stability 

difference of substrates is considered to be a key parameter that leads to high quality 

ASD. 

To further reveal the estimation above, density functional theory (DFT) was firstly 

applied to understand the thermodynamic mechanism of adsorption of Ga2S3 precursor 

atoms on GaN and graphene/GaN substrates. Here, the adsorption energy Eadsorption 

represents the preference of precursor atoms been adsorbed when passing through the 

substrates and is calculated as following3:

                                                                       (1)
𝐸𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 =

(𝐸𝑠𝑢𝑏𝑡𝑟𝑎𝑡𝑒 + 𝑛𝐸𝑎𝑑𝑎𝑡𝑜𝑚 ‒ 𝐸𝑡𝑜𝑡𝑎𝑙)

𝑛

where is the energy of the substrate,  and n are the energy and  𝐸𝑠𝑢𝑏𝑡𝑟𝑎𝑡𝑒 𝐸𝑎𝑑𝑎𝑡𝑜𝑚

number of the adatom, respectively, and  is the energy of the surface with 𝐸𝑡𝑜𝑡𝑎𝑙

adatoms adsorbed onto it. Generally, a positive Eadsorption with higher value indicates a 

more stable adsorption model4. Here, two substrate models were established, 

respectively. The first one is the GaN substrate model with Ga face exposed in the air 

according to the experiments. Inspired by previous report5, four adsorption sites were 

put into consideration(Stop, Sbridge, Sfcc, Shcp). Similarly, the second model contains 

graphene/GaN substrate with four adsorption sites available(Smid, Stop, Sbridge, Shcp)6. 

Additionally, the adsorption models are constructed with the coverage of 0.25, which 

has been widely accepted3, 7. The absorption sites on GaN and graphene are shown in 
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Fig. S2(a). In this simulation, Ga atom and S atom were used as absorption precursors 

according to previous report8. The calculated resulted of absorption energy of different 

precursors in different substrates are shown in Fig. 2(b) and (c), respectively. As shown, 

the Eadsorption of two precursors on graphene/GaN substrate are relatively higher when 

comparing with GaN substrate in all absorption points, indicating a grater 

thermaldynamic stability. That means precursors are more likely to be absorbed in 

graphene/GaN substrate. Therefore, by controlling the growing condition in an 

appropriate interval where Ga2S3 2D material can be well formed on graphene while 

precursors tend to be desorbed on GaN, high quality ASD can be realized.

Fig. S2 (a) Schematic illustration of top views for GaN (left) and graphene (right) surfaces. 

Calculated adsorption energies for (b) GaN and (c) GaN/graphene surfaces with each Ga and H2S 

precursors on high symmetric site.

What's more, the surface potential should also be put into consideration since it's of 

great importance to the absorption preference and distribution of precursor on 

substrates9. Referring to the principle of Kelvin scan probe in detecting the surface 

potential, the surface potential of two substrates is calculated as following9: 
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                                                                                 (2)
𝐸𝑗 =

𝑛

∑
𝑖 = 1

4𝜀(( 𝜎
𝑟𝑖𝑗

)12 ‒ ( 𝜎
𝑟𝑖𝑗

)6)
here,  and  are separately used to describe the interaction distance of atoms pair in 𝜎 𝑟0

terms of the lowest absolute value Van der Waals potential or mole potential, which are 

different in their own cases. Similarly,  represents the depth of potential trap in Van 𝜀

der Waals potential, respectively. The results of different precursor on different 

substrates were presented as heat map figures in Fig. S3(a)-(d). If the half of the depth 

of the potential valley was considered as the depth of the potential trap, it can be seen 

that the depth of both Ga and S precursors on the potential trap of graphene are around 

10-22 J per atom, while that of GaN are around 10-23 J per atom, indicating that graphene 

has a higher surface potential than GaN. Moreover, as we can see, the unique structure 

of 2D material (graphene) provide a wider and deeper potential trap than 3D material 

(GaN), and it's believed that when the area of the potential trap is larger and with a more 

regular boundary, the atoms are easier to settle and jump from one potential trap to 

another, rather than escape from the substarte, which also results in an easier tendency 

of capturing atoms. Therefore, in terms of the surface potential, graphene has a higher 

tendency to absorb precursor atom than GaN.
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Fig. S3. Surface potential heat maps of Ga atoms on (a) graphene and (b) GaN and S atoms on (c) 
graphene and (d) GaN

Apart from that, the different growing modes on two substrates may also attribute to 

this amazing phenomenon, which is highly related to the surface tensions of the 

substrate, the growing film, and their interface, in another word, the Bauer criterion10:

Δγ = γf + γs/f -γs                                                                                                            (3)

where γs, γf and γs/f are the surface tensions of the substrate, the growing film and their 

interface, respectively. Depending on the Δγ value, two possible growth modes can be 

distinguished: layer-by-layer growth or Frank-van der Merwe (FM) growth (Δγ ≤ 0) 

and island growth or Volmer-Weber (VW) growth (Δγ > 0). When the Δγ value changes 

its sign during the film growth, the third mechanism, layer-by-layer/island growth is 

possible, which is known as the Stranski-Krastanow (SK) mode. Since GaN has 

dangling bond, which greatly increase the tension between the Ga2S3/GaN interface, 

while no tension between Ga2S3/graphene interface since it’s bonded by van der Waals 

force. Therefore, it’s believed that precursor has formed VW growth on GaN and FM 

growth on graphene, where the former one has been suppressed under the growing 
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condition due to lower thermodynamic stability, leading to ASD. Apart from that, TEM 

image in Fig. 1(i) reveals that the Ga2S3 film grown on graphene has a very flat and 

uniform feature, which indicates that the transition of growth modes from FM to VM 

may occur when the it reaches the critical thickness since the tension of substrate is 

gradually changed from substrate to Ga2S3 itself as the Ga2S3 film being formed. 

Similarly, the VM growth mode, which often leads to the formation of discrete bulk 

overgrown particles known as “adlayer” reported previously8, 11, is suppressed as well, 

leading to high quality 2D film.

To further investigate the factors influencing the selectivity, molecular dynamic (MD) 

simulations were conducted. MD simulation is a well-developed method to investigate 

the behavior of particles in molecular sizes. It uses the potential energy functions to 

describe the interaction forces of particles and integrates the Newtonian equation of 

motion to get the trajectories of particles12. The trajectories of these particles can reflect 

a macroscopic behavior. Some studies have used molecular dynamics to investigate the 

interaction on interfaces, which explained and predicted the results of experiments13-15. 

In the experimental part, a complete chemical vapor deposition (CVD) method included 

deposition, island growth, and crystallization. The selectivity of crystallization would 

be verified if the deposition rates on each substrate were completely different16. 

Compared with mainstream simulation software such as LAMMPS, GROMACS, and 

Material Studio, the self-programming MD simulation program based on Python offers 

a more flexible environment for users to adjust the algorithm according to the 

conditions of the experiment and was used to confirm the result of the experiment and 

show the selectivity of different substrates of gas atom deposition. 

Considering the balance of running speed, reaction time, and amount of gas atoms, an 

ensemble was built with the dimensions of 120.4 nm × 120.4 nm × 80.3 nm, which 

could contain 144 atoms in total. The thickness of both graphene and GaN substrate 

were set to be over 1.5 nm and their component atoms were fixed so as to reduce the 

complexity. Ga, H, and S atoms were introduced into the NVT ensemble with the ratio 
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of 1：2：1 to create the desire gaseous form of hydrogen sulfide (H2S) and free state 

Ga atoms, where the configuration of the H2S was calculated by geometric optimization 

via DFT. Then, DFT calculation was also used to determine the interaction strength 

between atoms. Several models were built according to different interaction pairs and 

calculated in regard of their potential energy at different distances. For non-bonding 

interaction, it was described with Van der Waals potential while bonding interaction 

was in turn described with Morse potential as formula12:

                                                             (4)

𝐸𝑛𝑜𝑛 ‒ 𝑏𝑜𝑛𝑑𝑖𝑛𝑔 =
𝑛

∑
𝑖 =  1
𝑖 ≠  𝑗

4𝜀(( 𝜎
𝑟𝑖𝑗

)12 ‒ ( 𝜎
𝑟𝑖𝑗

)6) 

                                                                       (5)

𝐸𝑏𝑜𝑛𝑑𝑖𝑛𝑔 =
𝑛

∑
𝑖 =  1
𝑖 ≠  𝑗

𝐷0(𝑒
𝐾(𝑟𝑖𝑗 ‒ 𝑟0)

‒ 1)2

Among them,  and  are separately used to describe the interaction distance of atoms 𝜎 𝑟0

pair in terms of the lowest absolute value Van der Waals potential or mole potential, 

which are different in their own cases. Similarly,  and  represent the depth of 𝜀 𝐷0

potential trap in Van der Waals and Moore potentials themselves, respectively. K is 

called the depths of quantum well and k is constant. It's worth mentioning that formula 

13 is mostly the same as formula 2 but with different description object, where formula 

13 is for the single atom pair while formula 2 is for the whole system. The DFT 

calculation results summary is presented in Table S1.

Non-bonding interaction pairs (J)𝜎 (m)𝜀
Ga-H 3.628×10-22 3.185×10-10

Ga-S 3.767×10-21 4.161×10-10

Ga-Ga 3.074×10-21 4.3558×10-10

Ga-N 4.891×10-21 3.5868×10-10

Ga-C 9.656×10-21 3.8429×10-10

H-C 1.529×10-22 3.3106×10-10

H-N 4.349×10-21 3.4264×10-10

S-C 8.950×10-21 3.6825×10-10

S-N 1.129×10-22 3.0605×10-10

Bonding interaction pair (J)𝐷0 (m-1)𝐾 (m)𝑟0

Ga-S 5.139×10-19 -0.826×1010 2.240×10-10

H-S 5.163×10-19 -1.925×1010 1.326×10-10
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Table S1. Summary of particle interactions calculated from DFT.

To control the temperature of the ensemble, a local Berendsen thermostat was 

introduced onto the top and bottom of the ensemble, and the thermal exchange 

coefficients were set according to the thermal transmission coefficient of graphene and 

GaN17-19. The thickness of the thermostat was designed to be 5 Å, at which point the 

heat transformation is the strongest so as to realize the particle collision. To ensure the 

accuracy and enhance the efficiency of the simulation, a cutoff distance was designed 

to be 15 Å. The calculation time step and output time step were set to 0.001 ps and 0.1 

ps. The total simulation time would vary from different intentions. 

To show the selectivity of gas atoms deposition, it is needed to developed a descriptor 

to count up the deposition atoms on the substrate. In this work, considering the vibration 

of atoms on the substrate, the atom located at a vertical distance smaller than 8 Å 

between it and the substrate will be regarded as being deposited. Additionally, since the 

experiment had shown that the thin film only contained Ga and S, only these two 

elements would be counted up. Thus, the deposition rate should be defined as:

                                                                                                                     (6)
𝜃 =

𝑑1 + 𝑑2

𝑡1 + 𝑡2

Where  and  refers to the amounts of deposited Ga and S atoms,  and  refers to 𝑑1 𝑑2 𝑡1 𝑡2

the total amounts of Ga and S atoms inside the ensemble. Based on these preconditions, 

deposition statistics could be conducted and shown with the deposition rate versus 

times. For more information about the model setting, please referring to the method 

part. Firstly, a 1500 ps simulation was carried out in terms of the substrates difference 

to reveal the selectivity qualitatively and the real simulation images were recorded and 

displayed in Fig. S4(a)-(f). As shown, both of the deposition rate curves increase with 

the advancement of time and eventually reach their saturation states. The precursor 

particles show obvious selectivity of deposition, where the maximum deposition rate of 

graphene was almost 10 times higher than that in GaN. These results directly reveal the 

deposition preference of precursor on graphene compared to GaN. 
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Fig. S4. Pictures of precursor absorption model on GaN recorded at (a) 100 ps, (b) 300 ps, (c)1200 
ps and that on graphene recorded at (d) 100 ps, (e) 300 ps, (f)1200 ps.

To conclude these phenomena the relationship curves of precursor deposition rate and 

time on different substrates are shown in Fig. S5. Comparing to graphene, which has a 

saturated deposition rate of around 0.5, the curve on GaN is going through a regular 

vibration between 0.05 and 0. This indicates the change of weak equilibrium between 

absorption and desorption due to the variation of precursor concentration on the GaN 

substrate.

Fig. S5. The relationship between deposition rate and time in terms of different substrates. The 

inset figure is the enlarged picture of GaN.

The growing parameters could also affect the quality of ASD. Here, several conditions 
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were put into consideration. Firstly, the substrate temperature was put into 

consideration. Since the temperature of substrate will decrease as the distance between 

the heat source increase, a temperature coefficient  was defined to describe the 𝑘

relationship between them mathematically:

                                                                                                                     (7)𝑇𝑠 = 𝑘𝑇𝑔

where  is the temperature of the substrate, and  is the setting temperature. In order 𝑇𝑠 𝑇𝑔

to have a comprehensive understanding on how the modification of substrate 

temperature affect the performance of selective deposition, the values of  were set to 𝑘

be between 0.4 and 0.9 with the step size of 0.1 to conducted the similar simulation 

correspondingly on different substrate. Learned from the above case, a distinct 

difference could be observed in a relatively short period. Thus, several 200 ps based 

simulations could be feasible to study the temperature-dependent deposition behavior 

as well as reducing the total computation time and were displayed as Fig. S6 (a)-(f). 

Fig. S6 Comparation of deposition rate verse time in terms of GaN and graphene when 
temperature coefficient  is (a) 0.4, (b) 0.5, (c) 0.6, (d) 0.7, (e) 0.8 and (f) 0.9.𝑘

Similarly, simulation at different pressure with a pressure index , which is the exponent 𝑖

of pressure, was put into consideration:
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                                                                                                                      (8)𝑃𝑖 = 𝑃0
𝑖

Where  and  represent the pressure of setting one and default one. i values were 𝑃𝑖 𝑃0

taken from 0.8 to 1.3 with the step size of 0.1. The results of similar description from 

above were plot on Fig. S7(a)-(f). 

Fig. S7 Comparation of deposition rate verse time in terms of GaN and graphene when pressure 
index  is (a) 0.8, (b) 0.9, (c) 1, (d) 1.1, (e) 1.2 and (f) 1.3.𝑖

Based on these, quantitative selectivity S was introduced and defined as:

                                                                                                                     (9)
𝑆 =

𝜃1 ‒ 𝜃2

𝜃1

where  refers to the deposition rate of graphene, and  refers to the deposition rate 𝜃1 𝜃2

of GaN. What's more, to evaluate the kinetic behavior, the deposition rate was averaged 

with time to get a more representative value, which is called expected deposition rate. 

                                                                                                      (10)
�̅�𝑎 + 𝑏

2

=  

∑
𝑎 < 𝑡 < 𝑏

𝜃𝑖Δ𝑡

𝑡𝑏 ‒ 𝑡𝑎

Where  is the instantaneous deposition rate in time , , ,  is the length of time, 𝜃𝑖 𝑖 Δ𝑡 𝑡𝑏 𝑡𝑎

and the initial time and ending time.

The relationships of the  value, , and  are shown in Fig.S6 (a). The result 𝑘 �̅�100𝑝𝑠 𝑆
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confirms that the deposition kinetic was negatively related to the temperature for both 

substrates. It shows that the relative difference was higher than 0.8 for almost all the 

temperatures and even higher than 0.9 when k is between 0.6 to 0.8. This is because as 

the deposition rate of both goes down together with increasing k, there is a zone that 

the deposition rate of graphene falls slower than the GaN, resulting in a relatively higher 

selectivity in deposition. The results indicates that selectivity exists in a wide range of 

temperatures, setting the foundation of industrialization. The relationships between i, 

, and  is shown in Fig. S6 (b), which presents the trend that the speed of �̅�100𝑝𝑠 𝑆

deposition is positively related to the pressure, and the selectivity is negatively related. 

A slower deposition may result in a high selectivity, but reaction at such a low speed is 

not suitable for massive production. While a faster deposition would lead to a relatively 

low selectivity. 

Fig. S8 The relationship of deposition rates/ related mathematic relation and (a) temperature 
coefficient/ (b) pressure index in terms of different substrates.

The above result implies that the external conditions have a certain influence on the 

deposition kinetic, but was not as evident as that of substrate since the selectivity are 

always higher than 0.8 in all cases. On the whole, the simulation results show that the 

selectivity exist in a wide range of conventional working condition of CVD process 

which provides a fundamental of mass production of ASD based Van der Waals 

heterojunction devices.
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Fig. S9. Photoluminescence excitation (PLE) of bare GaN and heterojunction.

Fig. S10. UV-vis absorption spectra of Ga2S3/graphene/GaN heterojunction and Ga2S3/graphene 
grown on mica.



14

Fig. S11. The rectification performance of Ga2S3/graphene/GaN-based device
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Fig. S12. I–V curves of device as photodetector in the dark and under UV illumination.

Fig. S13. Performance of device as optomemristor. Photoresponse under 308 nm UV light (a) with 

various light intensities. (b)The Learn-Forget-Relearn curve under UV illumination. (c) The 

difference of postsynapse current (∆PSC) plotted as a function of the spike number (d) Paired-pulse 

facilitation (PPF) index of as-fabricated device. (e) I-T curves under -3 V@308 nm and 3 V@308 

nm. (f)I-T curves under -3 V@365 nm and 3 V@254 nm. Here, t1 and t2 is 0.90 s and 19.47 s under 

the impulse frequency of 1 Hz according to PPF index in Fig. S9 (d)20, which are also consistent of 

reported optomemristor21-23. It should also be noticed that in these cases, the proportion of slow 

decay in the decrease current after the removal of illumination is larger than before (Fig. 3(d)), 

which is because higher illumination intensity increases the ratio of carriers blocked by barriers 

compared to that collected by electrodes so that the optomemristor plays a more important role. 

Device Performance Definition
Firstly, the responsivity (R), also known as the photodiode current per unit of incident 

light per unit of power, can be calculated using the following formula:24

                                                                                                                 (11)
𝑅 =

𝐼 ‒ 𝐼𝑑𝑎𝑟𝑘

𝑃𝐴

Where I and Idark represent currents measured under light and dark conditions, 

respectively; P is the power intensity of incident light and a is the illumination effective 
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area of PD (0.125 mm2) . D* is the detectivity, defined as the index of the detector’s 

ability to detect the minimum signal, also known as the detector sensitivity, which can 

be calculated using the following formula:25

                                                                                                      (12)                             
𝐷 ∗ = 𝑅( 𝐴

2𝑒𝐼𝑑𝑎𝑟𝑘
)

1
2

Where every symbol is the same as above except e represents the electron charge. 

External quantum efficiency (EQE), is considered to be a direct expression of the 

relationship between the induced photon and the carrier that ultimately produces the 

response. This is calculated as follows:

                                                                                                (13)
𝐸𝑄𝐸(%) =

1240𝑅
𝜆

100

Here, λ represents the wavelength of incident light. Lastly, linear dynamic range (LDR) 

describes the range of linear response of PDs to the light intensity. It can be calculated 

by26:

                                                                                         (14)
𝐿𝐷𝑅 = 10𝑙𝑜𝑔(

𝑃𝑠𝑎𝑡𝑅365 𝑛𝑚

2𝑒𝐵𝐼𝑑𝑎𝑟𝑘
)

where Psat is the saturated light power when it deviates from the linear response (which 

is much larger than the light power at the density of 676 mW/cm2), R365nm is the 

photoresponsivity, and B is the bandwidth, which is about 7.7×10-4 Hz (Details can be 

found in Fig. S13(f)).
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Fig. S14. The dependence of detectivity on light power density under various wavelengths of UV 
illumination and different bias modes.

Fig. S15. The dependence of detectivity on light power density under various wavelengths of UV 
illumination and different bias modes.
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Device Working Mechanism Revelation via I-V Fitting

In this work, the  I-V curves with the bulk dominated mechanisms including Ohmic 

(I∝V), space-charge-limited current (SCLC,I∝Vn) and Poole-Frenkel emission (P-F, 

ln(I/V)∝V1/2), and interface dominated mechanisms including Schottky or thermionic 

emission (ln(I)∝V1/2) and Fowler-Nordheim tunneling (FNT, ln(I/V2)∝1/V)27-30 were 

put into consideration. It was found that the P-F emission, SCLC and thermionic 

emission can fit the I–V curves well, showing the linear relationship at the relatively 

large voltage region. However, considering the almost defect free 2D functional layers 

in our device, the synaptic properties should be mainly determined by the interface 

effects, meaning that the thermionic emission plays a dominating role in the resistive 

variation process as shown in Fig. S16(a), the result is consistent with previous analysis 

that charge carriers transport are limited by the height of the interface barrier. If the 

carriers can obtain enough energy provided by thermal activation, they will overcome 

the potential barrier at the semiconductor/graphene interfaces31, 32. As the input photons 

increase, the photogenerated carriers gradually fill the potential well in graphene layer, 

resulting in a higher response current that depends on the increased free charge carrier 

concentration. Fig. S16(b) is the fitting result with the thermionic emission model of 

the device in dark. The linear relation of ln(I) versus V1/2 in the plot shows that the 

device in dark has similar conduction mechanism compared with the device under light, 

which is consistent with the thermionic emission mechanism.
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Fig. S16. Fitted I-V curves with thermionic emission conduction mechanism (a)with illumination 
under the wavelength of 308nm and (b)without illumination.

ESN-based Pattern Recognition Simulation
ESN is a variant of RNN, which is mainly used to process temporal data. A supervised 

learning algorithm, linear regression, is used by the network as the training method, 

instead of gradient-related and backpropagation, which avoids the problems of gradient 

exploding, heavy computational costs, local minima, etc. At the same time, it is 

conceptually simple, efficient training, easy implementation, etc. It consists of the input 

layer, the reservoir, and the output layer. The reservoir is the core of the ESN, and it is 

a pool of randomly interconnected nonlinear neurons that produce the reservoir states 

for feature extraction by mapping the input temporal data to the reservoir. The temporal 

data can be decomposed into a series of time series data according to the specific time 

steps, which makes the reservoir get a large number of time-dependent reservoir states.

The input neurons representing the input features are connected randomly and sparsely 

to the reservoir neurons, which can transform the input feature vector u[n] composed 

of time series data of the current time step n into the reservoir input vector r'[n] of the 

current time step n by the following equation33:

                                                                                       (15)𝑟'[𝑛] = 𝑔(𝑊in𝑢[𝑛] + 𝑤bi)
where Win and Wbi are the input weight matrix and the bias weights of the input layer, 

and g is the activation function. Theoretical studies have suggested that the dimension 

Nin of the input feature vector should be much smaller than the connections Kin between 

each reservoir neuron and each input neuron 33, so the sparsity of the network is defined 

as the proportion of Kin in Nin.

The calculation of the reservoir state r[n] of the current time step n needs r[n-1] for 

making the reservoir neurons have recurrent connections and a great memory capacity, 

which allows the reservoir to capture the temporal correlations of the input temporal 

data. To quantitatively measure the memory capacity of the reservoir, the leakage rate 

λ of the reservoir neurons is defined, which denotes the leakage of the reservoir state at 

the previous time step. Then r[n] can be computed as follows 33:

                                           (16)𝑟[𝑛] = (1 ‒ 𝜆)𝑟[𝑛 ‒ 1] + 𝜆𝑓(𝑟'[𝑛] + 𝑊res𝑟[𝑛 ‒ 1])



20

where Wres is the reservoir weight matrix of the connections between the reservoir 

neurons, and f is also the activation function. The reservoir state collection matrix R 

can be obtained by the above two equations. During the training process, to minimize 

the output error between the output collection matrix Y and the target output collection 

matrix D, the output weight matrix Wout which connects the reservoir neurons to the 

output layer neurons is calculated by the methods of least square optimization in linear 

regression and generalized inverse matrix. The readout function is 33:

                                                                                  (17)𝑊out = (𝑅𝑅T +  𝜖𝐼) ‒ 1(𝐷𝑅T)
where ε is the regularization factor and I is the identity matrix. In fact, the equation 

comes from the ridge regression. The calculation formula of the output vector y[n] at 

time step n is 33: 

                                                                                                       (18)𝑦[𝑛] = 𝑊𝑜𝑢𝑡𝑟[𝑛]

In addition, Win, wbi, and Wres are randomly generated and remain fixed when training, 

which is the key reason for the reduction of computational cost and training time.

When fitting the simulated memristor model, the experimental data was used under the 

experimental conditions of 0.1 Hz pulse frequency and 1 s pulse width. The curve fitting 

tool box in MATLAB was used to fit the increasing and decaying parts of the PSC in 

the selected experimental data with the function formula, respectively. The former one 

uses a custom polynomial function, while the latter one uses a custom exponential 

function with three terms to get the PSC activation function and the PSC decay rate 

function. When a dynamic memristor receives a series of pulses, the activation function 

and decay rate function can be used to calculate and simulate the PSC change process. 

In this way, the dynamic memristor can be regarded as a combination of the two 

functions, and produce corresponding responses to the input pulses. The optimized 

result of the activation and decay function are shown as following: 
𝑓𝑢𝑝（𝑡） 

=  5017.78𝑡5 ‒ 1518.14𝑡4 + 1720.75𝑡3 ‒ 9092.24𝑡2 + 2408.55𝑡 + 0.01  
(0𝑠 ≤ 𝑡 ≤ 1𝑠)

                                                                                           (19)
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𝑓𝑑𝑜𝑤𝑛（𝑡）
= 0.2266𝑒 ‒ 0.0122(𝑡 ‒ 1) + 0.1106𝑒 ‒ 0.1821(𝑡 ‒ 1) + 0.6408𝑒 ‒ 2.0062(𝑡 ‒ 1) +

0.0221  (𝑡 ≥ 1𝑠)

                                                                                               (20)

To verify the effectiveness of the fitting function, firstly, the functions were modified 

and utilized to get the experimental data of eight consecutive stimulus signals, where 

the results are shown in Fig. S17 (a). The comparison of the PSC between the fitting 

data and the experiment data shows that the simulated PSC curve can well describe the 

experimental PSC curve except some difference at the beginning. In order to explain 

this phenomenon from a deeper perspective, a comprehensive study of decay rate 

extracted from the leakage rate needs to be calculated. Here, the sum of the leakage rate 

and the decay rate is 1 and reason of why using decay rate to describe is because this is 

more alike to the decaying tendency of fitting curve. Fig. S17 (b) shows the 

combination of 8 decay rate curves extracted from the experiment and the simulation 

one. Recall from Fig. 3(f), the decay rate is highly related to the size of the PSC peak. 

The higher PSC peak is obtained with continuous pulses, which leads to a slower 

decline of the decay rate owing to the accumulation of light-induced carriers. That is to 

say, the effect of carrier leaking is smaller with higher carrier concentration. It is 

observed that the fitting curve is close to the experimental curves of the higher PSC 

peaks. 

Fig. S17. (a) Comparison of the PSC between the fitting data and the experiment data of dynamic 
memristors. (b) Comparison of decay rate curve with the time changing from 0 s to 10 s between 

the fitting data and the experiment data.
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To better describe the performance of the fitting curve, Table S2 summarizes the 

evaluation metrics of the fitting effect, which further confirms the fitting effect. From 

the table, the R2 of 0.92 indicates the fitting data has high fitting degree. The MAE of 

14.15 and the MRE of 15.129% indicate the influence of fitting error is small. The 

RMSE of 23.704 is close to the MAE, which means there are no outliers' data. The 

MAPE of 10.6% indicates the margin of error for the fitting data is small. Considering 

that the calculation of the decay rate is extremely complex and increases the fitting cost, 

the fitting curve is adequate enough to represent the experimental results.

In terms of the optimized parameter training process, 80% of the UCI handwritten digits 

dataset (1,797 test samples, 8 × 8 pixels, gray level range of 0-16) was divided into a 

training set while the other 20% was divided into a test set. Apart from that, the time 

step interval, time step and the number of selected pixels per row Kin were put into 

consideration as controlling parameter and the number of dynamic memristors in the 

reservoir is fixed as 400. The effect of these parameters to the recognition accuracy are 

shown both as figure (Fig. S18) and table (Table S3). The optimal network parameters 

were determined to get the best classification results, where the binarization threshold 

value of the grayscale images was 4, the pulse width was 1 s, the number of selected 

pixels in the same row was 2, the width of time frame and time step interval were 4 s 

and 2 s and the highest recognition accuracy is 94.2 %.

Parameters R-Squared MAE RMSE MRE MAPE

Values 0.920 14.150 23.704 15.129 0.106 

Table S2. The evaluation metrics of the fitting effect for fitting data (round to 3 decimal places), 

which includes coefficient of determination (R-Squared), mean absolute error (MAE), root mean 

square error (RMSE), mean relative error (MRE) and mean absolute percentage error (MAPE)
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Fig. S18 The recognition accuracy changing under different parameter combinations. The time 

frame is from 1.0 s to 5.0 s in step of 0.5 s, the time step interval is from 1 s to 6 s in step of 1s, 

and Kin is from 1 to 7. Every Kin corresponds to a surface of recognition accuracy.

Interval time/(s) Interval time/(s)Time 
frame/(s) Kin

1 2 3 4 5 6
Time 
frame/(s) Kin

1 2 3 4 5 6

1.0 0.156 0.264 0.614 0.253 0.447 0.322 1.0 0.872 0.867 0.867 0.867 0.867 0.867

1.5 0.886 0.875 0.903 0.469 0.472 0.353 1.5 0.861 0.847 0.850 0.850 0.850 0.850

2.0 0.733 0.919 0.919 0.925 0.925 0.922 2.0 0.844 0.842 0.844 0.844 0.844 0.844

2.5 0.925 0.925 0.931 0.919 0.922 0.922 2.5 0.847 0.836 0.844 0.842 0.836 0.833

3.0 0.925 0.925 0.922 0.919 0.919 0.919 3.0 0.861 0.853 0.856 0.858 0.853 0.856

3.5 0.919 0.919 0.917 0.917 0.917 0.919 3.5 0.858 0.856 0.853 0.858 0.853 0.853

4.0

1

0.914 0.917 0.917 0.917 0.917 0.919 4.0

5

0.856 0.856 0.853 0.858 0.853 0.850
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Time 
frame/(s) Kin

Interval time/(s) Time 
frame/(s) Kin

Interval time/(s)

1 2 3 4 5 6 1 2 3 4 5 6

4.5 0.914 0.917 0.917 0.914 0.917 0.922 4.5 0.856 0.847 0.853 0.850 0.850 0.850

5.0 0.914 0.917 0.917 0.914 0.919 0.922 5.0 0.853 0.853 0.853 0.850 0.850 0.850

1.0 0.669 0.658 0.453 0.850 0.856 0.897 1.0 0.119 0.083 0.086 0.122 0.128 0.103

1.5 0.928 0.925 0.928 0.925 0.928 0.925 1.5 0.842 0.856 0.861 0.858 0.858 0.861

2.0 0.939 0.931 0.928 0.928 0.928 0.928 2.0 0.817 0.828 0.825 0.819 0.825 0.825

2.5 0.933 0.931 0.931 0.933 0.931 0.931 2.5 0.800 0.794 0.783 0.789 0.789 0.792

3.0 0.931 0.936 0.939 0.936 0.931 0.931 3.0 0.797 0.794 0.797 0.789 0.789 0.792

3.5 0.933 0.939 0.933 0.933 0.936 0.936 3.5 0.794 0.789 0.794 0.794 0.797 0.797

4.0 0.936 0.942 0.939 0.936 0.933 0.936 4.0 0.794 0.794 0.797 0.800 0.800 0.800

4.5 0.925 0.936 0.933 0.936 0.936 0.936 4.5 0.800 0.803 0.803 0.803 0.800 0.803
5.0

2

0.928 0.928 0.933 0.933 0.933 0.936 5.0

6

0.797 0.797 0.794 0.792 0.789 0.789

1.0 0.914 0.914 0.911 0.911 0.908 0.903 1.0 0.819 0.814 0.814 0.819 0.822 0.817

1.5 0.908 0.906 0.906 0.900 0.900 0.900 1.5 0.839 0.847 0.842 0.844 0.850 0.847

2.0 0.892 0.889 0.886 0.886 0.886 0.886 2.0 0.794 0.789 0.789 0.794 0.789 0.794

2.5 0.881 0.878 0.878 0.878 0.869 0.869 2.5 0.803 0.794 0.783 0.775 0.769 0.767

3.0 0.883 0.886 0.886 0.886 0.886 0.883 3.0 0.778 0.778 0.775 0.772 0.761 0.761

3.5 0.892 0.881 0.878 0.878 0.878 0.878 3.5 0.767 0.769 0.767 0.764 0.764 0.761

4.0 0.892 0.883 0.883 0.878 0.878 0.878 4.0 0.767 0.764 0.761 0.764 0.761 0.761

4.5 0.889 0.886 0.881 0.881 0.881 0.889 4.5 0.767 0.767 0.758 0.761 0.758 0.756

5.0

3

0.886 0.886 0.886 0.889 0.886 0.883 5.0

7

0.764 0.758 0.761 0.756 0.764 0.756

1.0 0.897 0.900 0.903 0.906 0.903 0.897

1.5 0.878 0.886 0.892 0.892 0.892 0.889

2.0 0.875 0.881 0.881 0.881 0.881 0.881

2.5 0.881 0.875 0.878 0.872 0.872 0.869

3.0 0.869 0.869 0.872 0.867 0.864 0.861

3.5 0.867 0.864 0.864 0.867 0.864 0.861

4.0 0.858 0.856 0.861 0.864 0.858 0.853

4.5 0.856 0.858 0.858 0.856 0.856 0.858

5.0

4

0.858 0.856 0.856 0.856 0.856 0.856

Table S3 Summary of accuracy under different training parameters
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