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Figure S1. Band structure of the four-band tight-binding model for the parameters as a = 0.1 eV, t

=0.3eV,A=0.25¢eV and Apor = 0.2 V.
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Figure S2. (a) Energy dependence of the anomalous Hall conductivity aﬂy and (b) the

corresponding edge spectrum of TB model under the irradiation of right-handed CPL with light

intensity eA/h = 0.15 A™', indicating that the Chern number is -2.
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Figure S3. Comparison between the first-principles and Wannier fitting band structures.
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Figure S4. Band structure evolution for T-Bi under the irradiation of left-handed CPL with light
intensity eA/# of 0.35, 0.37, 0.4 and 0.42 A-!, respectively. The red and green dots denote spin-up

and spin-down component of bismuth, respectively.
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Figure S5. Energy dependence of the anomalous Hall conductivity a,é‘y under the irradiation of

right-handed CPL with light intensity eA/h = 0.5 A-!, revealing a quantized value with Chern

number C = -2 in the gapped regime. The inset shows the reciprocal-space distribution of Berry

curvatures within the gapped regime.



Note S1. Floquet Theory

We first consider it under the irradiation of an external time-dependent circularly polarized light:
A(r) = Alnsin(wr)e, +cos(wr)e, ] S
where @ is the frequency and A is the amplitude of the light, 7 =11 represent the

€
chirality of the circularly polarized light. The Peierls substitution k — k + % A(7) is used to take

the effect of light into account in the Hamiltonian. The time-dependent tight-binding Hamiltonian
will be written as
Hk,7)=> > t"(z)e" ey (k. 7)c, (K, 7)
mn-j (S2)
where 7 is the time, R j is the lattice vector and (m, n) is Wannier orbital index. The vector

iEA@)d™
potential is coupled to the Hamiltonian through the minimal coupling of t{"(z) =t{"e" "

where HT” is the position vector between Wannier orbital m in the 0-cell and Wannier orbital n
in the j-cell. Taking into account the lattice and time translation invariance, the time-dependent
Hamiltonian can be effectively treated with Floquet theorem by performing dual the Fourier
transformation [1-2]. Then an effective static Hamiltonian in the frequency and momentum space
can be obtained

He (k@)= 3" D HI (K) + 2h8,,8,,,10 (K)C 5 (K)
mn a.p (S3)

. . . + . . . . .
where (e, ) is the Floquet index ranging from —oo to +o0, C,, (c ﬁn) is creation (annihilation)
operator in the Floquet-Bloch picture, and the matrix element H ;nf 5 (R, W) is

H, (k@) = 3 e (% [t e g nagy)
. (84)

This Floquet-Bloch Hamiltonian can be written as the block matrix form



Hy,—how H_ H.,
HF(R’Q))Z e Hl HO H 1

H, H, H,+ho

(S5)

In this work, we use ¢ = 1 for the Fourier transformation, model analysis and DFT calculations.
The infinite Floquet sidebands can reduce to a finite dimension by including only a few lowest
order photon processes of absorbtion or emission. Here, limited to a virtual photon process, one
can distinctly observe the Floquet-Bloch band structures under CPL. Each matrix element in Eq.

(S5) can be obtained by averaging the time-dependent Hamiltonian.
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