Supplementary Information (SI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2025

Supplementary materials

Erbium: Key to Simultaneously Achieving Superior Temperature-Stability and High Magnetic Properties in 2:17-type Permanent Magnets

Zan Long ^a, Chaoyue Zhang ^b, Yuqing Lia ^{*}, Baoguo Zhang ^b, Mengying Bian ^a, Chong Ling ^a, Youning Kang ^a, Hongguo Zhang ^a, Qiong Wu ^a, Ming Yue ^{a*}

^aCollege of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China

^bHangzhou Kede Magnetic Components Co., Ltd, Hangzhou 311500, China

*Corresponding author. Email address: yueming@bjut.edu.cn (Ming Yue), yqli@bjut.edu.cn (Yuqing Li)

Tab. S1 Saturation magnetization intensity of RE_2Co_{17} phase with different rare earth elements

Compound	$\mu_0 M_s / \mathrm{T}$
Sm ₂ Co ₁₇	1.22
$\mathrm{Gd_2Co_{17}}$	0.75
Tb_2Co_{17}	0.66
$\mathrm{Dy_{2}Co_{17}}$	0.68
$\mathrm{Ho_{2}Co_{17}}$	0.84
$\mathrm{Er_{2}Co_{17}}$	0.91
Tm_2Co_{17}	1.21

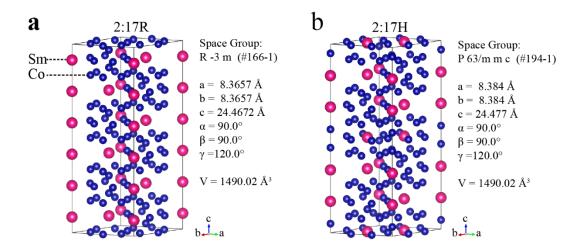


Fig. S1 2:17 phase supercell structure

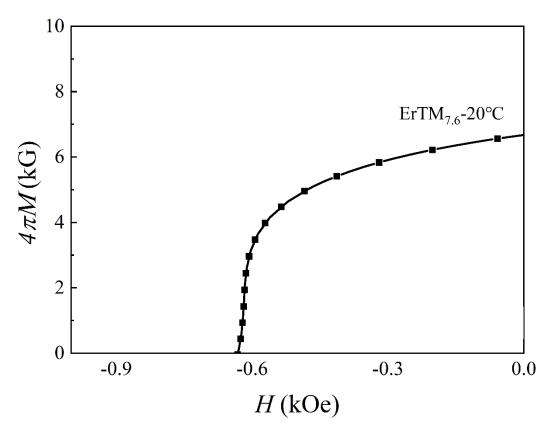
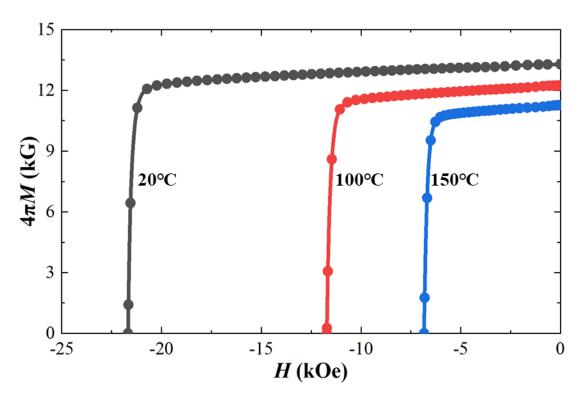



Fig. S2 Demagnetization curve of $ErTM_{7.6}(x=1)$ magnet.

 $Fig.~S3~Demagnetization~curves~at~20\text{-}150~^{\circ}C~of~commercial~Nd\text{-}Fe\text{-}B~magnet~obtained~from}$ Earth-Panda~Advance~Magnetic~Material~Co.,~Ltd.

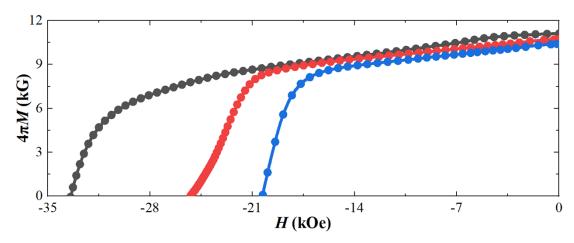


Fig. S4 Demagnetization curves at 20-150 °C of commercial Sm₂Co₁₇-type magnet purchased from Tianhe Magnetic Materials Technology Co., ltd.

Fig. S5 The comparison of $(BH)_{\rm max}$ at 20-150 °C of commercial Nd-Fe-B, Sm₂Co₁₇-type, TC Sm₂Co₁₇-type and Alnico magnets with the Er-magnet in this work, the corresponding $\gamma_{20-150^{\circ}\text{C}}$. The data of Alnico (brand CAlNiCo80/12) magnet is from Hangzhou Kede Magnetic Components Co.,Ltd.

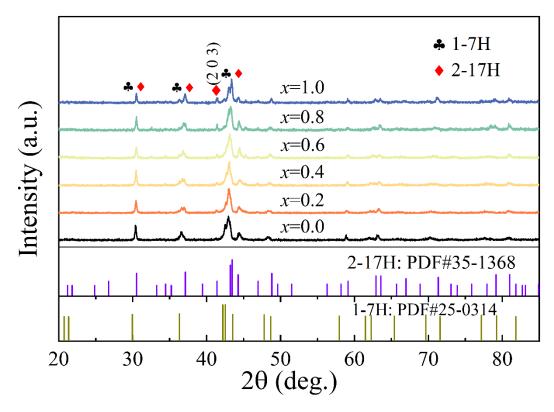


Fig. S6 XRD diffraction pattern of $Sm_{1\text{--}x}Er_xTM_{7.6}$ ingots

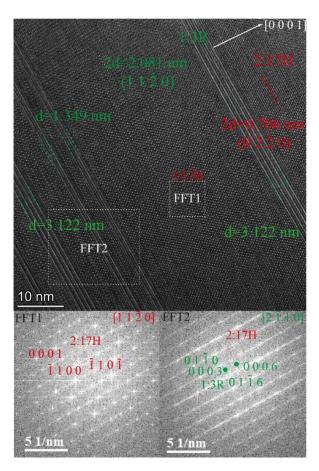


Fig. S7 HRTEM images of ErTM_{7.6} magnets and Fast Fourier Transform (FFT) patterns corresponding to the FFT1 and FFT2

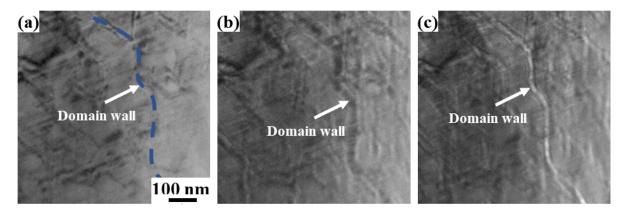


Fig. S8 LTEM images of $Sm_{0.4}Er_{0.6}TM_{7.6}$ magnets. a-c are the bright field, over-focus, and under-focus images, respectively. The black and white traces in b and c indicate that this position is a magnetic domain wall, and the corresponding position is also marked with a dashed line in a.