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Fig. S1. Schematic diagram to present the method to grow Sn dendrites in gel.
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Fig. S2. Dendrite growth rates in hydrogels with different polymer structures at 10 V 
(Concentration of SnCl2 solution: 2 M).
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Fig. S3. Image of pAPTAC gel after growing Sn dendrite for different time at 10 V.
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Fig. S4. Digital images of pVB gel after swelling in SnCl2 solution with different 
concentrations.
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Fig. S5. Polarizing microscopic images to show the dendrites grown density in gel at 
different voltages after growing for 80 s.
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Fig. S6. The water content of pVB@xSn gels, prepared by swelling in SnCl2 solution 
with different concentrations and then balanced in water.



S-8

Fig. S7. The (a) EIS spectroscopy and (b) conductivity of pristine/dendrite composite 
gels with different molecular structures.
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Fig. S8. FTIR spectra of pVB@pristine and pVB@xSn gels (x=0.5, 1, 2 and 4).
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Fig. S9. The tensile stress-strain curves of pVB gels after swelling in SnCl2 solutions 
with different concentrations; corresponding Young's modulus, tensile work, breaking 
strain and tensile strength.
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Fig. S10. Calculated tensile strength and breaking strain of pVB@xSn gels after 
equilibrium in water.
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Fig. S11. (a) Tensile curves of dendrite composite gels with different molecular 

structures, and (b) the corresponding tensile strength and tensile work.
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Fig. S12. (a) Method for evaluating fracture toughness using a single notch test. (b, c) 
Stress-extension ratio curves of (b) pVB@pristine and (c) pVB@xSn gels with/without 
notch in single notched sample tests.
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Fig. S13. Schematic to illustrate the structure of pVB@2Sn gel based sensor.
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Fig. S14. Response and recovery time of the pVB@2Sn gel sensor under 20% strain.
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Fig. S15. The resistive signal of a notched pVB@2Sn gel sensor under different applied 
strains ranging from 5% to 100%.



S-17

Fig. S16. Polarizing microscopic images to show the morphology change of dendrite 
network under loading and unloading states.
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Fig. S17. (a) Two channel mode sensing the grasping and releasing action of 
mechanical claw by using pVB@2Sn sensor. (b) The two-channel signals of the sensor 
during grasping items with different sizes.
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Fig. S18. The biocompatibility of pVB@2Sn gel.
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Fig. S19. Image of the experimental setup for ECG monitoring.
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Table S1. Recipe for preparing different hydrogels.

Monomer Initiator Crosslinker Water

pVB 1.22 g 0.97 g

pSB 1.11 g 1.08 g

pAM 0.28 g 1.91 g

pAPTAC 1.10 g 1.09 g

pAMPS 0.83 g

0.01 g 0.003 g

1.23 g


