Respirator-Inspired Shielding and Catalytic Oxidation Strategies for Smoke-Suppression Polymers Enhancing Fire Safety

Shuai-Qi Guo^a, Lei He^a, Dan-Xuan Fang^a, Ya-Nan Wu^a, Fu-Rong Zeng^a, Ming-Jun

Chen^b, Hai-Bo Zhao^{a,*}, Yu-Zhong Wang^{a,*}

^a The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.

^b School of Science, Xihua University, Chengdu, 610039, China.

*Corresponding Authors: Tel. & Fax:

E-mail: haibor7@163.com (Hai-Bo Zhao); yzwang@scu.edu.cn (Yu-Zhong Wang)

EDTA-K₃ • 2H₂O

Fig. S1. Structure of EDTA-K₃•2H₂O

Table S1. Detailed AAS data of K element in EDTA-K₃•2H₂O

AAS-K element	Test value (%)	Theoretical value (%)
EDTA-K ₃ •2H ₂ O	27.1	26.5

Fig. S2. Schematic diagram of the fabrication process for EDTA-K₃ filled FPUF

Sample	DEP- 330G (php)	POP- H3O (php)	H ₂ O (php)	TEOA (php)	DC- 2525 (php)	A-1 (php)	A33 (php)	FRs (php)	MDI- 2424 (php)	Denstiy (kg/m ³)
Neat FPUF	80.0	20.0	0.85	1.0	5.0	0.1	0.9	0	28.0	132±2
FPUF/15 EDTA-K ₃	80.0	20.0	1.00	1.0	5.0	0.1	0.9	15	31.0	131±3
FPUF/20 EDTA-K ₃	80.0	20.0	1.10	1.0	5.0	0.1	0.9	20	33.0	128±2
FPUF/25 EDTA-K ₃	80.0	20.0	1.16	1.0	5.0	0.1	0.9	25	34.5	135±3

Table S2. Formulations of FPUF samples

FR: flame retardant (EDTA-K₃); php: parts per hundred polyether polyols by weight.

Fig. S3. Mechanical performance of flame retardant FPUF. (a-b) Compressive cyclic

stress-strain curves and (c) the tensile stress-strain curves

Fig. S4. Compression resilience performance of Neat FPUF and FPUF/25 EDTA-K₃.

Table S3. Results of the compression and tension tests for FPUF and FPUF/EDTA-K₃

Sample	Density (kg/m ³)	θ (%)	ε (%)	σ (kPa)	Toughness (kJ/m ³)
Neat FPUF	132±2	98.7±0.2	98±4	72±3	35±3
FPUF/25 EDTA- K ₃	135±3	98.5±0.2	98±7	76±5	39±6

 ω , ε , and σ represent the deformation recovery ratio, elongation at break, and tensile strength, respectively.

Fig. S5. Digital pictures of FPUF/EDTA-K₃ before and after the butane spray gun

ignition experiment.

Fig. S6. Specific smoke density (Ds) for Neat FPUF and FPUF/ EDTA-K₃ with nonepilot flame mode.

Table S4. Detailed smoke test data for Neat FPUF and FPUF/EDTA-K₃.

Sample	Ds _{max}	$\mathrm{Ds}_{\mathrm{max}}{}^{\mathrm{b}}$	LOI (vol%)
Neat FPUF	380±12	310±20	19.5 ± 0.1
FPUF/15 EDTA-K ₃	423±21	297±18	24.4 ± 0.2
FPUF/20 EDTA-K ₃	419±24	204 ± 14	25.8 ± 0.2
FPUF/25 EDTA-K ₃	172 ± 15	155 ± 15	26.1 ± 0.2

a: pilot flame mode; b: none-pilot flame mode

Fig. S7. Results of the cone calorimetry test for Neat FPUF and FPUF/EDTA- K_3 with varying content at the heat flux of 25 kW/m². (a) THR, (b) TSP, (c) Mass lose rate (MLR) curves and (d) COP.

Table S5. Detailed combustion data of Neat FPUF and FPUF/EDTA- K_3 obtained from cone calorimetry at the heat flux of 25 kW/m².

Sample	TTI (s)	pHRR (kW/m²)	THR (MJ/m ²)	TSP (m ²)	char yield (%)	Av-EHC (MJ/kg)
Neat FPUF	12 ± 1	450 ± 12	118 ± 3	26.1 ± 1.1	3.2 ± 0.3	29.3 ± 1.1
FPUF/15 EDTA-K ₃	10 ± 1	400 ± 22	80 ± 2	22.0 ± 1.4	8.1 ± 0.2	24.8 ± 1.2
FPUF/20 EDTA-K ₃	10 ± 1	433 ± 19	81 ± 3	16.5 ± 0.4	10.6 ± 0.3	25.3 ± 0.9
FPUF/25 EDTA-K ₃	10 ± 1	470 ± 23	85 ± 2	14.6 ± 1.2	11.5 ± 0.1	27.4 ± 1.5

^aTTI: time to ignition; pHRR: peak heat release rate; THR: total heat release; TSR: total smoke release; TSP: total smoke production; Av-EHC means the average effective heat of combustion of volatiles.

Fig. S8. Results of the cone calorimetry tests for Neat FPUF and FPUF/EDTA- K_3 with varying content at the heat flux of 35 kW/m². (a) HRR, (b) THR and (c) TSP curves.

Sample	TTI (s)	pHRR (kW/m²)	THR (MJ/m ²)	TSP (m ²)	char yield (%)	Av-EHC (MJ/kg)
Neat FPUF	11 ± 1	358 ± 12	104 ± 2	11.8 ± 1.1	4.5 ± 0.2	21.6 ± 1.1
FPUF/15 EDTA- K ₃	13 ± 2	377 ± 18	83 ± 2	9.2 ± 1.8	12.2 ± 0.3	16.2 ± 0.9
FPUF/20 EDTA- K ₃	12 ± 1	361 ± 10	83 ± 3	9.3 ± 1.3	13.7 ± 0.5	17.9 ± 1.2
FPUF/25 EDTA- K ₃	12 ± 1	338 ± 13	78 ± 2	8.7 ± 0.5	14.5 ± 0.3	14.0 ± 1.5

Table S6. Detailed combustion data of Neat FPUF and FPUF/EDTA-K₃ obtained from cone calorimetry at the heat flux of 35 kW/m².

Fig. S9. Stress-strain curves.

 Table S7. Mechanical properties of the EP thermosets.

Sample	Tensile strength (MPa)	Tensile Strain (%)	Tensile modulus (MPa)	Impact strength (kJ·m-2)
Neat EP	75.7 ± 1.9	5.9±0.3	1477 ± 31	10.0±2.4
EP/10 wt% EDTA-K ₃	67.6±2.1	4.5 ± 0.2	1565 ± 129	10.7±1.7

EP/15 wt%	740 1 1 0	54 0 1	1520 104	<u> </u>
EDTA-K ₃	$/4.0\pm1.8$	5.4 ± 0.1	1539 ± 104	8.2±0.3

Fig. S10. SEM images of the impact fracture surface for the EP thermosets.

Fig. S11. Flame retardancy and smoke suppression. (a) THR, (b) TSP, and (c) SPR for EPs. (d) HRR, (e) THR, and (f) TSP for WPUs.

Sample	TTI (s)	pHRR (kW/m²)	THR (MJ/m ²)	TSP (m ²)	Char yield (%)	Ds
Neat EP	30 ± 1	1466 ± 22	63 ± 1	25.5 ± 1.3	6.2 ± 0.8	1320 (overrange)
EP/10 wt% EDTA-K ₃	15 ± 1	960 ± 21	62 ± 2	19.0 ± 1.0	11.2 ± 1.0	941 ± 12
EP/15 wt% EDTA-K ₃	20 ± 1	616 ± 18	52 ± 1	17.0 ± 0.2	13.7 ± 1.1	1002 ± 21

Table S8. Detailed data from cone calorimetry and smoke density of EPs.

 Table S9. Detailed data from cone calorimetry of WPUs.

Sample	TTI (s)	pHRR (kW/m²)	THR (MJ/m ²)	TSP (m ²)	Char yield (%)
Neat WPU	25 ± 1	554±21	33 ±1	$0.95 {\pm} 0.05$	0
WPU/15 wt% EDTA-K ₃	13 ± 2	564±19	27±2	0.79 ± 0.02	1.2±0.2

Table S10. Comparisons of EDTA-K $_3$ with other flame retardant FPUFs

FR Structure	FR content (wt%)	LOI (vol%)	ΔTSP (%)	Cone calorimeter test condition	Ref.
EDPPA	10	21.4	+52.6		
	20	23.6	+74.4	-	[38]
EDPPO	20	22.1	+64.6	-	[50]
EDPMA	20	22.5	+71.4	Sample size: $100 \times 100 \times 25 \text{ mm}^3$	
D-Urea	10	23.0	+203.7	Heat flux: 25 kW/m ² according to ISO 5660-1:2015	[11]
D-Orea	20	23.5	+245.5	8	[11]
ΠΜΡΜΔ	6.4	21.6	+17.6	-	
	12.8	22.3	+24.7	-	[39]
ТАМРО	6.4	19.0	+19.4	-	

	12.8	19.4	+12.9
BDMPP	6.4	21.5	+106
DMMP	6.4	21.0	+58
Divitivit	12.8	21.5	+63
FDTA-K-	15 wt.%	26.1	_15%
LDIA-K3	(25 php)	20.1	

Fig. S12. Digital and SEM images of the char residues after cone calorimetry at the heat flux of 25 kW/m² for (a) Neat FPUF, (b) FPUF/15 EDTA-K₃, (c) FPUF/20 EDTA-K₃, and (d) FPUF/25 EDTA-K₃.

Fig. S13. SEM images for the char of the FPUF/25 EDTA- K_3 along with EDS elemental mapping.

Fig. S14. Digital of the char residues after cone calorimetry at the heat flux of 35 kW/m^2 for (a) Neat FPUF, (b) FPUF/15 EDTA-K₃, (c) FPUF/20 EDTA-K₃, (d) FPUF/25 EDTA-K₃.

Fig. S15. TG-MS and TG-FTIR curves of EDTA-K₃ under nitrogen.

Fig. S16. Total ion chromatogram of EDTA-K₃ at 600 °C from Py-GC/MS and the main pyrolysis products.

Fig. S17. Digital photos of carbon residue in tube furnace of EDTA- K_3 at different temperature.

Fig. S18. High-resolution C 1s X-ray photoelectron spectra of carbons obtained from

EDTA-K₃ at different temperatures.

Fig. S19. High-resolution O 1s X-ray photoelectron spectra of carbons obtained from EDTA-K₃ at different temperatures.

Fig. S20. Digital photos of carbon residue in the tube furnace of (a) Neat FPUF and (b)

FPUF/25 EDTA- K_3 at different temperatures under nitrogen atmosphere.

Fig. S21. Structural characterizations of the carbon residue of FPUF/EDTA- K_3 in the tube furnace under N_2 . (a) Fourier transform-infrared spectra and (b) Raman spectra.

Fig. S22. TG curves of Neat FPUF and FPUF/EDTA-K₃ under nitrogen atmosphere.

Table S11. Detailed TG data of Neat FPUF and FPUF/EDTA-K₃ under nitrogen

atmosphere.

Sample/N ₂	T _{5%} (°C)	T _{max} (°C)	R _{max} (%/°C)	Residue (%)
Neat FPUF	315.4	390.3	2.00	5.4
FPUF/25 EDTA-K ₃	265.0	387.6	1.42	11.5

Sample/air	T _{5%} (°C)	T_{max1}/R_{max1} (°C)/ (%/°C)	T _{max2} /R _{max2} (°C)/(%/°C)	T _{max3} /R _{max3} (°C)/(%/°C)	Residue (%)
Neat FPUF	275.5	330.6/1.04	357.6/1.02	531.3/0.15	0.7

326.3/1.13

FPUF/25 EDTA-K₃

249.7

Table S12. Detailed TG data of Neat FPUF and FPUF/EDTA-K₃ under air atmosphere.

487.3/0.08

10.1

-

Fig. S23. TG-MS spectra of gaseous pyrolysis products of Neat FPUF and FPUF/EDTA-K₃ under air atmosphere.

Fig. S24. Raman spectra of soot made by Neat FPUF and FPUF/EDTA-K₃.

Fig. S25. Simple graphic diagram of test piece cutter for tensile measurements.