Supplementary Information (SI) for Molecular Omics. This journal is © The Royal Society of Chemistry 2024

Supplementary Figures

4

1

5 Fig. S1. The performance of four lipid extraction methods on nine sample types. Panel A, the total number of variables of unmatched m/z signals found for four extractions across nine sample types, that passed background and QC checks. Panel **B**, the 6 7 total signal of all unmatched m/z signals found for four extractions across nine sample types, that passed background and QC 8 checks. Samples were drawn from stock materials (see methods). BAD, Bligh & Dyer extraction applied to high throughput 9 extraction¹; DMT, dichloromethane-methanol-triethylammonium chloride²; EAT, ethyl acetate with triethylammonium chloride; 10 TBM, tert-butylmethylether extraction, as described by Matyash et al.³. BRA, pooled brains from Mus musculus; BTM, milk from Bos taurus; DQU, whole pooled Desmodesmus quadricauda; EuL, leaves from Eucalyptus perriniana; HEA, pooled hearts from Mus 11 12 musculus; LIV, pooled livers from Mus musculus; PFH, polyfloral pollen; WHB, whole Bombus terrestris, pooled; YEA, Saccharomyces

13 cerevisiae BY 4743. Error bars represent standard deviation based on 10 mesaurements.

- 14
- 15

18 **Fig. S2. The performance of four lipid extraction methods on nine sample types, processed using a target library.** Panel **A**, the total 19 number of variables of matched *m/z* signals found for four extractions across nine sample types, that passed background and QC

20 checks. Panel **B**, the total signal of all matched *m/z* signals found for four extractions across nine sample types, that passed

21 background and QC checks. Samples were drawn from stock materials (see methods). BAD, Bligh & Dyer extraction (high

throughput extraction)¹; DMT, dichloromethane-methanol-triethylammonium chloride²; EAT, ethyl acetate with triethylammonium

23 chloride; TBM, *tert*-butylmethylether extraction, as described by Matyash *et al.*³. BRA, pooled brains from *Mus musculus*; BTM, milk

from Bos taurus; DQU, whole pooled Desmodesmus quadricauda; EuL, leaves from Eucalyptus perriniana; HEA, pooled hearts from Mus musculus; LIV, pooled livers from Mus musculus; PFH, polyfloral pollen; WHB, whole Bombus terrestris, pooled; YEA,

- 26 Saccharomyces cerevisiae BY 4743.
- 27
- 28

Fig. S3. A switch analysis of triglycerides in *Dicentrarchus labrax* (seabass) against *Sparus aurata* (bream) and *Scomber scombrus* (mackerel). The pie chart in the top left shows the number of ubiquitous lipid variables for that network, for each phenotype (*A*type variables). Pie charts on arrows represent variables found in the two adjacent compartments (*B*-type variables). Smaller pie charts represent isolated variables (*U*-type). *J* represents the Jaccard-Tanimoto coefficient for the comparison, with accompanying *p* value, as a measure of the similarity between the variables identified in the two phenotypes for each comparison. The *p* value shown represents the probability that the difference between the lists of variables for the two phenotypes occurred by random chance. TGs include all adducts of whole TGs and the DGs arising from in-source fragmentation of TGs during data collection.

44 45

46 Fig. S4. Switch analyses of phospholipid and triglyceride variables in Queen Bombus terrestris bees fed either Fagopyrum tataricum 47 (FAG) or Helianthus annuus (HEL) pollen. Panel A, Switch Analysis of triglycerides; B, Switch Analysis of phosphatidylcholines; C, 48 Switch Analysis of phosphatidylinositols; D, Switch Analysis of phosphatidylglycerols. The pie chart in the top right shows the 49 number of ubiquitous lipid variables for that network, for each phenotype (A-type variables). Larger pie charts (on the arrows) 50 represent variables found in the two adjacent compartments (B-type variables). Smaller pie charts represent isolated variables (U-51 type). J represents the Jaccard-Tanimoto coefficient for the comparison, with accompanying p value, as a measure of the similarity 52 between the variables identified in the two phenotypes for each comparison. The p value shown represents the probability that the 53 difference between the lists of variables for the two phenotypes occurred by random chance.

58 Fig. S5. Switch analyses of phospholipid and triglyceride variables in *Bombus terrestris* colonies fed either *Fagopyrum tataricum*

(FAG) or *Helianthus annuus* (HEL) pollen. Panel **A**, Phosphatidylinositols; **B**, Phosphatidylglycerols. The pie chart in the top right shows the number of ubiquitous lipid variables for that network, for each phenotype (**A**-type variables). Larger pie charts (on the arrows) represent variables found in the two adjacent compartments (**B**-type variables). Smaller pie charts represent isolated

62 variables (*U*-type). *J* represents the Jaccard-Tanimoto coefficient for the comparison, with accompanying *p* value, as a measure of 63 the similarity between the variables identified in the two phenotypes for each comparison. The *p* value shown represents the

64 probability that the difference between the lists of variables for the two phenotypes occurred by random chance.

67 TABLES

68

- 69 <<see excel spreadsheet, attached>>
- 70

71 **Table S1. Sample list and preparation of tissues used in the present study.** The purpose of the ratio is to give a chemically and

72 biologically stable, pipettable solution in which 1-5 μg of lipid can be transferred in 5-60 μL liquid. ¹Ratio of GCTU to fresh weight

73 (=1). This is provided as a guide, tissues with more/less fatty material may need different ratios of buffer to sample; ²Material added

74 to 1 mL of GCTU dispersion; ³samples were freeze-dried before mechanical disruption/dispersion with a hand-held homogeniser, see

75 instructions; ⁴Samples stored at 5°C for a week before homogenisation. Pooled stocks used in the present study represent

76 homogenates from at least 10 individuals. Pollen not marked as fresh was collected by bees.

	D. quad.	Eucalyptus	Polyfloral	Bombus	Saccharomyce	Mus musculus	Mus musculus	Mus musculus	Bos taurus	Sum
cv	(whole)	per. (leat)	pollen	(whole)	s cerevisiae (whole)	(brain)	(neart)	(liver)	(miik)	
30%										
BAD	328	306	753	493	270	509	603	594	242	4098
DMT	293	239	653	450	341	535	570	381	349	3811
EAT	383	437	751	581	279	616	757	449	374	4627
ТВМ	70	152	811	257	193	288	319	480	177	2747
20%										
BAD	69	109	278	146	85	162	206	208	88	1351
DMT	54	51	314	167	111	236	227	87	136	1383
EAT	120	190	341	205	89	250	228	92	154	1669
ТВМ	9	36	398	48	46	57	61	131	33	819
15%										
BAD	12	41	121	44	25	48	67	69	32	459
DMT	8	13	172	71	33	108	96	18	41	560
EAT	32	76	184	97	33	120	60	19	63	684
ТВМ	1	8	225	23	25	25	15	36	8	366

79 Table S2. The number of variables with a coefficient of variation below three thresholds. Signals are unmatched *m/z* signals of

80 isolates of four extractions across nine sample types that passed background and QC checks. Samples drawn from stock materials

81 (see methods). BAD, Bligh & Dyer extraction applied to high throughput extraction¹; DMT, dichloromethane-methanol-

82 triethylammonium chloride²; EAT, ethyl acetate with triethylammonium chloride; TBM, tert-butylmethylether extraction³.

	D. quad. (whole)	Eucalyptus	Polyfloral pollen	Bombus terrestris	Saccharomyce	Mus musculus	Mus musculus	Mus musculus	Bos taurus	Sum
cv	(whole)		polien	(whole)	(whole)		(near t)	(iiver)		
30%										
BAD	90	82	90	178	153	125	144	142	80	1084
DMT	96	78	105	193	126	133	91	172	120	1114
EAT	114	107	89	193	144	132	117	157	123	1176
ТВМ	20	31	74	185	108	74	103	67	44	706
20%										
BAD	51	56	63	117	104	93	98	107	58	747
DMT	57	44	73	138	88	103	46	120	88	757
EAT	87	78	67	155	116	103	72	118	88	884
ТВМ	9	17	58	142	54	49	75	34	33	471
15%										
BAD	2	17	16	35	25	23	35	28	22	203
DMT	5	4	24	40	37	40	6	31	30	217
EAT	25	22	5	54	30	33	57	14	23	263
ТВМ	1	5	26	56	4	5	22	8	3	130

85 Table S3. The number of variables with a coefficient of variation below three thresholds. Signals are Lipid-ID matched *m/z* signals

86 of isolates of four extractions across nine sample types that passed background and QC checks. Samples drawn from stock

87 materials (see methods). BAD, Bligh & Dyer extraction applied to high throughput extraction¹; DMT, dichloromethane-methanol-

88 triethylammonium chloride²; EAT, ethyl acetate with triethylammonium chloride; TBM, *tert*-butylmethylether extraction³.

89

90

	Lipid	Expected	Concentration	m/z	m/z	m/z
		mass	(nM)	(+ve	(+ve	(+ve
		(mg)		ionis.	ionis.	ionis.
				Mode,	Mode,	Mode,
				+H+)	+NH4+)	+Na+)
1	LPC	1	1.889	529.3989	-	551.3811
2	SM	1	1.361	734.7684	-	756.7506
3	PE	10	13.356	748.7241	-	770.7067
4	PS	10	12.615	792.7140	-	814.6965
5	PI	1	1.204	830.5767	847.6030	852.5583
6	PC	10	11.641	859.06	-	881.0383
7	TG(light)	1	1.232	-	771.7224	776.6774
8	TG(heavy)	1	1.327	-	829.7979	834.7527
9	DGDG*	10	13.268	949.6827	966.7093	971.6647
10	MGDG*	10	13.268	759.5986	776.6252	781.5806

93 Table S4. The Internal Standards used. Standards were labelled with at least 6 deuterium atoms and used without purification. *Not 94 deuterated.

95