Electronic Supplementary Information (ESI)

Total Mechano-synthesis of 2-Cyclopropyl-4-(4-Fluorophenyl)

Quinoline-3-Acrylaldehyde—A Pivotal intermediate of Pitavastatin

Jingbo Yu,*ab Yanhua Zhang,a Zehao Zheng a and Weike Su*ab

 ^a National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Huzhou Key Laboratory of mechanochemistry, Zhejiang University of Technology. Hangzhou, 310014, P.R. China. E-mail: <u>yjb@zjut.edu.cn</u>
 ^b Huzhou Key Laboratory of mechanochemistry, Zhejiang Yangtze River Delta Biomedical

Industry Technology Research Park, Deging, 313200

Table of Contents

1. General Information
2. Reactions optimization & typical procedures
2.1 Optimization of Reaction Conditions
3 General Procedures
3.1 General procedure for the synthesis of 4-(4-fluorophenyl) quinoline (3a)
3.2 Extrusion procedure for the synthesis of 4-(4-fluorophenyl) quinoline (3a)S12
3.3 General procedure for the synthesis of 2-cyclopropyl-4-(4-fluorophenyl)quinoline (5a)
3.4 General procedure for the synthesis of 3-[2-cyclopropyl-4-(4-fluorophenyl)-3-quinolin- 2-yl]-2-propenal (7a)
3.5 Extrusion procedure for the synthesis of 3-[2-cyclopropyl-4-(4-fluorophenyl)-3- quinolin-2-yl]-2-propenal (7a)
4. Comparison of the synthetic routes of 3-[2-cyclopropyl-4-(4-fluorophenyl)-3- quinolin-2-yl]-2-propenal (7a)
5. Calculations of <i>E</i> -factor for the mechanochemical method
6. Characterization Data for Products
7. References
8. Spectra for All Compounds

1. General Information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All of the ball milling reactions were conducted in a mixer mill (MM 400 RetschGmbh, Hann, Germany) with 15 or 50 mL stainless steel grinding vessels with stainless steel balls, if not mentioned otherwise. All of the extrusion reactions were conducted in a twin-screw extruder (SJZS-7A, China). Reactions were monitored by Thin Layer Chromatography (TLC) using UV light (254/365 nm) for detection. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker 400 or 600 MHz spectrometer in CDCl₃ with tetramethylsilane (TMS) as internal standard. The following abbreviations were used to explain multiplicities: s = singlet, brs = broad singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet and the *J* coupling constants were reported in Hertz unit (Hz). The melting points were recorded on melting point apparatus (Büchi B-540). The synthesis of substrates **3m**, **3n**, **3o** and were according to literature method¹ and the synthesis of **3p** was referred to literature 2².

2. Reactions optimization & typical procedures

2.1 Optimization of Reaction Conditions

Table S1. Optimization of chemical conditions for Suzuki-Miyaura coupling^[a]

Entry	Catalyst (mol %)	Base (equiv.)	Yield (%) ^[b]
1	$Pd(OAc)_2$ (10)	$K_3PO_4(3.0)$	81
2	PdCl ₂ (PPh ₃) ₂ (10)	$K_{3}PO_{4}(3.0)$	75
3	NiCl ₂ (PPh ₃) ₂ (10)	$K_{3}PO_{4}(3.0)$	75
4	NiCl ₂ (dppp) (10)	$K_{3}PO_{4}(3.0)$	83
5	NiCl ₂ (PCy ₃) ₂ (10)	$K_{3}PO_{4}(3.0)$	82
6	FeCl ₃ (PPh ₃) ₃ (10)	$K_{3}PO_{4}(3.0)$	29
7	FeCl ₃ (dppe) ₃ (10)	$K_{3}PO_{4}(3.0)$	32
8	FeCl ₃ (10)	$K_{3}PO_{4}(3.0)$	50
9	FeCl ₂ (10)	$K_{3}PO_{4}(3.0)$	33
13	NiCl ₂ (dppp) (10)/ FeCl₃ (10)	$K_2CO_3(3.0)$	43/ 53
14	NiCl ₂ (dppp) (10)/FeCl ₃ (10)	$Na_2CO_3(3.0)$	56/25
15	NiCl ₂ (dppp) (10)/FeCl ₃ (10)	NaHCO ₃ (3.0)	65/38

16	NiCl ₂ (dppp) (10)/FeCl ₃ (10)	$Cs_2CO_3(3.0)$	39/n.d.
17	NiCl ₂ (dppp) (10)/FeCl ₃ (10)	KF (3.0)	43/30
18	NiCl ₂ (dppp) (10)/FeCl ₃ (10)	CsF (3.0)	70/trace
19	NiCl ₂ (dppp) (10)	K ₃ PO ₄ (3.0)	76 ^[c] / 86 ^[c] /80 ^[d]
20	NiCl ₂ (dppp) (8/6)	K ₃ PO ₄ (3.0)	71/56
21	NiCl ₂ (dppp) (10)	K ₃ PO ₄ (2.0/4.0)	76/65
22	FeCl ₃ (10)	K ₂ CO ₃ (3.0)	$43^{[c]}/48^{[d]}/42^{[e]}$
23	FeCl ₃ (10)	K ₂ CO ₃ (2.0/3.5/4.0)	33/40/37
24 ^[f]	$FeCl_3(8)$	K ₂ CO ₃ (3.0)	65
25 ^[f]	$\operatorname{FeCl}_{3}(6)$	K ₂ CO ₃ (3.0)	48

^[a] Reaction conditions unless specified otherwise: **1a** (0.4 mmol), **2** (0.6 mmol), catalyst, base and NaCl (0.5 mass equiv.) were placed in a 15 mL stainless-steel vessel with a stainless-steel ball (d_{MB} = 10 mm), heated by heat-gun, milling in a mixer mill (RETSCH MM 400) for 30 min at 30 Hz. ^[b] Isolated yields. ^[c] **2** (0.48 mmol). ^[d] **2** (0.56 mmol). ^[e] **2** (0.64 mmol). ^[f] LAGs (H₂O: 0.08 μ L/mg). **MM** = mixer mill. n.d. = not detected.

Table S2	Ontimization (of orinding	auxiliary an	d LAGs for	Suzuki-Miyaura	counling ^[a]
1 abit 52.	Optimization	n gi munig	auxilial y all	IU LAUS IVI	Suzuki-wiiyaui a	coupring.

	Br +	$ \begin{array}{c} B(OH)_{2} \\ K_{3}PO_{4} \text{ or } K_{3}P$	talyst (10 mol%) 2CO ₃ (3.0 equiv.) ng auxiliary LAGs 0 Hz, 30 min (external)	F N 3a
Entry	Grinding auxiliary (mass	LAGs (<i>u</i> L/mg)	Yield (NiCl2(dppp)/K3PO	[%) ^[b]
	equiv.)	vr8/		rec13/ K ₂ CO ₃
1	_	_	62	trace
2	NaCl (0.5)	_	86	53
3	$Na_2SO_4(0.5)$	_	58	trace
4	Silica gel (0.5)	_	34	trace
5	neutral-Al ₂ O ₃ (0.5)	_	79	trace
6	PEG-4000 (0.5)	_	63	trace
7	NaCl (1.0)	_	41	25
8	NaCl (0.3)	_	74	30
9	NaCl (0.5)	H ₂ O (0.10)	/	60
10	NaCl (0.5)	H ₂ O (0.08)	62	80
11	NaCl (0.5)	H ₂ O (0.07)	/	63
12	NaCl (0.5)	H ₂ O (0.06)	/	55

13	NaCl (0.5)	MeOH (0.08)	n.d.	31
14	NaCl (0.5)	Dioxane (0.08)	n.d.	28
15	NaCl (0.5)	THF (0.08)	59	trace
16	NaCl (0.5)	<i>n</i> -Hexane (0.08)	73	trace
17	NaCl (0.5)	EtOAc (0.08)	47	trace

^[a] Reaction conditions unless specified otherwise: **1a** (0.4 mmol), **2** (0.6 mmol), Ni or Fe catalyst (10 mol%), K₃PO₄ or K₂CO₃ (3.0 equiv.), grinding auxiliary and LAGs were placed in a 15 mL stainless-steel vessel with a stainless-steel ball ($d_{\rm MB} = 10$ mm), heated by heat-gun, milling in a mixer mill (RETSCH MM 400) for 30 min at 30 Hz. ^[b] Isolated yields. **MM** = mixer mill; n.d. = not detected.

Table S3. Optimization of ball-milling parameters for Suzuki-Miyaura coupling

F	Time	Ball size	Frequenc	Yield (%)		
Entry	(min)	(mm)	y (Hz)	NiCl ₂ (dppp)/K ₃ PO ₄ ^[a]	FeCl ₃ /K ₂ CO ₃ ^[b]	
1	30	10	30	86	80	
2	30	12	30	83	70	
3	30	8	30	75	43	
4	20	10	30	72	60	
5	45	10	30	85	71	
6	60	10	30	93	58	
7	60	10	25	76	/	
8	60	10	20	68	/	
9	30	10	25	/	64	
10	30	10	20	/	32	

^[a] Reaction conditions: **1a** (0.4 mmol), **2** (0.56 mmol), NiCl₂(dppp) (10 mol%), K₃PO₄(3.0 equiv.) and NaCl (0.5 mass equiv.) were placed in a 15 mL stainless-steel vessel with a stainless-steel ball, heated by heat-gun, milling in a mixer mill (RETSCH MM 400) for y time at x Hz. Isolated yields. ^[b] Reaction conditions: **1a** (0.4 mmol), **2** (0.6 mmol), FeCl₃ (10 mol%), K₂CO₃ (3.0 equiv.), LAGs (H₂O: 0.08 μ L/mg) and NaCl (0.5 mass equiv.) were placed in a 15 mL stainless-steel vessel with a stainless-steel ball, heated by heat-gun, milling in a mixer mill (RETSCH MM 400) for x time at y Hz. Isolated yields.

		+	Ni o K ₃ P(N	r Fe catalyst (10 mol D ₄ or K ₂ CO ₃ (3.0 equ IaCl, w or w/o LAGs Extrusion		
	1a	2			3a	
Fntry		T (°C)		Screw speed	ST (kg/m	Y ^[c] ^{3.} day)
Entry	Ι	II	Ш	(rpm)	NiCl ₂ (dppp) /K ₃ PO ₄ ^[a]	FeCl ₃ /K ₂ CO ₃ ^[b]
1	50	65	50	25	1.80×10 ³	/
2	60	65	60	25	2.10×10 ³	/
3	65	75	80	25	2.43×10 ³	/
4	70	80	85	25	2.33×10 ³	/
5	65	75	80	18	2.78×10 ³	/
6	65	75	80	15	2.63×10 ³	/
7	100	105	100	25	/	1.84×10 ³
8	80	90	80	25	/	1.68×10 ³
9	75	85	75	25	/	1.72×10 ³
10	80	90	80	18	/	2.13×10 ³
11	80	90	80	15	/	2.05×10 ³

Table S4. Optimization of extrusion conditions for Suzuki-Miyaura coupling

B(OH)₂

Br

^[a] TSE reaction conditions A: **1a** (36 mmol), **2** (50.4 mmol), NiCl₂(dppp) (10 mol%) and K₃PO₄ (3.0 equiv.) were reacted in a twin-screw extruder (SJZS-7A). Feed rate: 2.63 g/min, temperature as specified, x rpm. ^[b] TSE reaction conditions **B**: **1a** (36 mmol), **2** (50.4 mmol), FeCl₃ (10 mol%), K₂CO₃ (3.0 equiv.), LAGs (H₂O: 0.08 μ L/mg) and NaCl (10 g) reacted in a twin-screw extruder (SJZS-7A). Feed rate: 2.63 g/min, temperature as specified, x rpm.^[c] STY = total product mass (kg) / (reactant volume (m³) × time (day).

ĺ	F S N 3a	Mg chip Additive (2.0 equiv.) Na ₂ SO ₄ (1.0 g) MM, 30 Hz 3×(30 min + 2 min break	→ → → → → → → → → → → → → → → → → → →	\bigtriangledown
Entry	Mg (equiv.)	Additive (2.0 equiv.)	4 (equiv.)	Yield (%) ^[b]
1	_	_	5.0	n.d.
2	2.0	_	5.0	18

3	3.0	_	5.0	43
4	4.0	_	5.0	37
5	4.5	_	5.0	25
6	3.0	TMEDA	5.0	30
7	3.0	TMPDA	5.0	trace
8	3.0	DBEDA	5.0	5
9[c]	3.0	_	3.0	43
10 ^[c]	3.0	_	4.0	53
11 ^[c]	3.0	_	4.5	50
12 ^[c]	3.0	_	5.0	48
13 ^[c]	3.0	_	5.5	40
14[¢]	3.0	_	6.0	36

^[a] Reaction conditions: **3a** (0.2 mmol), **4**, Mg chip, additive (2.0 equiv.) and Na₂SO₄ (1.0 g) were placed in a 15 mL stainless-steel vessel with a stainless-steel ball ($d_{\text{MB}} = 12$ mm), milling in a mixer mill (RETSCH MM 400) for [3 × (30 min + 2 min break)] at 30 Hz. ^[b] Isolated yields. ^[c] Na₂SO₄ (0.9 g). **MM** = mixer mill; n.d.= not detected. TMEDA = *N*, *N*, *N'*, *N'*-tetramethylethylenediamine; TMPDA = tetramethyl-1,3-diaminopropane; DBEDA = *N*, *N'*-dibenzylethylenediamine.

Table S6. Optimization of grinding auxiliary and LAGs for Minisci C-H alkylation^[a]

F A	+	Br	Mg chip (3.0 equiv.) LAGs	F
			grinding auxiliary MM , 30 Hz 3×(30 min + 2 min break)	
3a		4		Ja

Entry	LAGs ($\eta = 0.02$)	Grinding auxiliary (g)	Yield (%) ^[b]
1	_	$Na_2SO_4(1.0)$	43
2	MeCN	$Na_2SO_4(1.0)$	20
3	EtOAc	$Na_2SO_4(1.0)$	trace
4	DMSO	$Na_2SO_4(1.0)$	trace
5	DMF	$Na_2SO_4(1.0)$	27
6	DCE	$Na_2SO_4(1.0)$	7
7	Hexane	$Na_2SO_4(1.0)$	7
8	_	NaCl (1.0)	n.d.
9	_	Silica gel (1.0)	n.d.
10	-	KF (1.0)	15
11	_	$KF/Na_2SO_4 = 2/3$ (1.0)	trace

12	—	$KF/Na_2SO_4 = 3/7 (1.0)$	28
13	_	$KF/Na_2SO_4 = 1/4(1.0)$	32
14	_	$KF/Na_2SO_4 = 1/9 (1.0)$	41
15	_	$Na_2SO_4(0.6)$	42
16	_	$Na_2SO_4(0.8)$	45
17	_	$Na_2SO_4(0.9)$	53

^[a] Reaction conditions: **3a** (0.2 mmol), **4** (0.8 mmol), Mg chip (3.0 equiv.) LAGs ($\eta = 0.02$) and grinding auxiliary (1.0 g) were placed in a 15 mL stainless-steel vessel with a stainless-steel ball ($d_{\text{MB}} = 12 \text{ mm}$), milling in a mixer mill (RETSCH MM 400) for [3 × (30 min + 2 min break)] at 30 Hz. ^[b] Isolated yields. n.d. = not detected. DMSO = dimethyl sulfoxide; DMF = dimethylformamide; DCE = dichloroethane. **MM** = mixer mill.

Table S7. Optimization of ball-milling parameters for Minisci C-H alkylation^[a]

Entry	Frequency (Hz)	Time (min)	Mill balls (n×mm)	Yield (%) ^[b]
1	30	30×3	1×12	53
2	25	30×3	1×12	38
3	20	30×3	1×12	25
4	30	30×3	2×8	trace
5	30	30×3	1×10	23
6	30	30×3	1×14	64
7	30	30×3	1×15	50
8	30	30×4	1×14	43
9	30	30×5	1×14	40

^[a] Reaction conditions: **3a** (0.2 mmol), **4** (0.8 mmol), Mg chip (3.0 equiv.) and Na₂SO₄ (0.9 g) were placed in a 15 mL stainless-steel vessel, milling in a mixer mill (RETSCH MM 400) for x time at y Hz. ^[b] Isolated yields. **MM** = mixer mill.

Table S8. Optimization of gram-scale reaction conditions^[a]

Entry	4:3a (mmol)	Na_2SO_4 (g)	Mill balls (n×mm)	Yield (%) ^[b]
1	32:8	10	2×14	trace
2	24:8	10	2×14	28
3	16:8	10	2×14	35
4	16:8	12	2×14	42
5	16:8	13	2×14	45
6	16:8	14	2×14	51
7	16:8	15	2×14	50
8	16:8	17	2×14	40
9	16:8	19	2×12	38

^[a] Reaction conditions: **3a**, **4**, Mg chip (3.0 equiv.) and Na₂SO₄ were placed in a 50 mL stainlesssteel vessel, milling in a mixer mill (RETSCH MM 400) for $[3 \times (30 \text{ min} + 2 \text{ min break})]$ at 30 Hz. **MM** = mixer mill. ^[b] Isolated yields.

Table S9. Chemical conditions optimization for Oxidative Heck reaction^[a]

y	Catalyst (mol %)	L (mol %)	Oxidant (equiv.)	Yield (%) ^[b]
1	$Pd(OAc)_2(10)$	$L_1(13)$	$Ag_{2}CO_{3}(0.5)$	23
2	$Pd(OAc)_2(10)$	$L_1(13)$	Ag ₂ O (0.5)	12
3	$Pd(OAc)_2(10)$	$L_1(13)$	CF ₃ SO ₂ OAg (0.5)	18
4	$Pd(OAc)_2(10)$	$L_1(13)$	AgBF ₄ (0.5)	n.d.
5	$Pd(OAc)_2(10)$	$L_1(13)$	AgOAc (0.5)	n.d.
6	$Pd(OAc)_2(10)$	$L_1(13)$	$Ag_2CO_3/Cu(OAc)_2 = 1/1$ (0.5)	18

7	$Pd(OAc)_2(10)$	$L_1(13)$	$Ag_2CO_3/CuCO_3 = 1/1 (0.5)$	trace
8	$Pd(OAc)_2(10)$	L ₁ (13)	$Ag_2CO_3/Cu(OAc)_2 = 1/1$ (1.0)	27
9	Pd(OAc) ₂ (10)	L ₁ (13)	Ag_2CO_3 (1.0)	43 (28 ^[c] /34 ^[d])
10	$Pd(OAc)_2(10)$	$L_1(13)$	Ag ₂ CO ₃ (1.5/2.0)	34/31
11	$Pd[O_2C(CH_3)_3]_2(10)$	$L_1(13)$	Ag ₂ CO ₃ (1.0)	24
12	$Pd(acac)_2(10)$	$L_1(13)$	Ag ₂ CO ₃ (1.0)	27
13	$PdCl_2(PPh_3)_2(10)$	$L_1(13)$	Ag ₂ CO ₃ (1.0)	30
14	$Pd[O_2C(CH_3)_3]_2(10)$	$L_1(13)$	Ag ₂ CO ₃ (1.0)	24
15	$Pd(OAc)_2(8)$	$L_1(10.4)$	$Ag_2CO_3(1.0)$	35
16	$Pd(OAc)_2(6)$	$L_1(7.8)$	$Ag_2CO_3(1.0)$	31
17	$Pd(OAc)_2(10)$	$L_2(13)$	Ag ₂ CO ₃ (1.0)	32
18	$Pd(OAc)_2(10)$	$L_{3}(13)$	Ag ₂ CO ₃ (1.0)	31

^[a] Reaction conditions: **5a** (0.4 mmol), **6** (0.6 mmol), catalyst (x mol %), 1,10-phenanthroline (L₁, 1.3x mol%), oxidant, DMF (0.12 μ L/mg) and Na₂SO₄ (0.5 g) were placed in a 15 mL stainless-steel vessel with a stainless-steel ball ($d_{\rm MB} = 10$ mm), heated by heat-gun, and milling in a mixer mill (RETSCH MM 400) for [2 × (30 min + 2 min break)] at 30 Hz. ^[b] Isolated yields. ^[c] **6** (0.4 mmol). ^[d] **6** (0.8 mmol). L₂= CEMTPP (ethyl (triphenylphosphoranylidene)acetate). L₃=DPPE (1,2-bis(diphenylphosphino)ethane). **MM** = mixer mill; n.d. = not detected.

Table S10. Optimization of grinding auxiliary and LAGs for oxidative Heck coupling^[a]

↓ F	0	Pd(OAc) ₂ (10 mol%) 1,10-phenanthroline (13 mol %) Ag ₂ CO ₃ (1.0 eq.)	F C C C C C C C C C C C C C C C C C C C
5a	6	LAGs, grinding auxiliary MM, 30 Hz 2×(30 min + 2 min break) 99°C (external)	7a

Entry	LAGs (µL/mg)	Grinding auxiliary (g)	Yield (%) ^[b]
1	DMF (0.12)	$Na_2SO_4(0.5)$	43
2	DMF (0.12)	_	trace
3	_	$Na_2SO_4(0.5)$	trace
4	MeCN (0.12)	$Na_2SO_4(0.5)$	23
5	EtOAc (0.12)	$Na_2SO_4(0.5)$	18
6	DMSO (0.12)	$Na_2SO_4(0.5)$	25
7	Hexane (0.12)	$Na_2SO_4(0.5)$	22
8	DMF (0.10)	$Na_2SO_4(0.5)$	34
9	DMF (0.80)	$Na_2SO_4(0.5)$	28
10	DMF (0.60)	$Na_2SO_4(0.5)$	23

11	DMF (0.12)	silica gel (0.5)	32
12	DMF (0.12)	NaHCO ₃ (0.5)	n.d.
13	DMF (0.12)	$Na_2CO_3(0.5)$	trace
14	DMF (0.12)	$Na_2SO_4(0.25)$	39
15	DMF (0.12)	$Na_2SO_4(0.75)$	35

^[a] Reaction conditions: **5a** (0.4 mmol), **6** (0.6 mmol), Pd(OAc)₂ (10 mol%), 1,10-phenanthroline (13 mol%), Ag₂CO₃ (1.0 eq.), LAGs and grinding auxiliary were placed in a 15 mL stainless-steel vessel with a stainless-steel ball ($d_{\text{MB}} = 10$ mm), heated by heat-gun, milling in a mixer mill (RETSCH MM 400) for [2 × (30 min + 2 min break)] at 30 Hz. ^[b] Isolated yields. DMSO = dimethyl sulfoxide. DMF = dimethylformamide. **MM** = mixer mill. n.d. = not detected.

Table S11. Optimization of ball-milling parameters for oxidative Heck coupling^[a]

	F C Sa	Pd(OAc) ₂ (10 m 1,10-phenanthroline Ag ₂ CO ₃ (1.0 Na ₂ SO ₄ (0.5 DMF (0.12 µL/ MM, y Hz, x m 99°C (extern	rol%) (13 mol %) eq.) g) mg) al) 7a	\sim
Entry	Time (min)	Frequency (Hz)	Mill ball (1×mm)	Yield (%) ^[b]
1	30×2	30	10	43
2	30×2+15	30	10	30
3	30×2+30	30	10	31
4	30×2	25	10	33
5	30×2	20	10	24
6	30×2	30	8	28
7	30×2	30	12	37

^[a] Reaction conditions: **5a** (0.4 mmol), **6** (0.6 mmol), Pd(OAc)₂ (10 mol%), 1,10-phenanthroline (13 mol%), Ag₂CO₃ (1.0 eq.), DMF (0.12 μ L/mg) and Na₂SO₄ (0.5 g) were placed in a 15 mL stainless-steel vessel with a stainless-steel ball ($d_{\rm MB} = 10$ mm), heated by heat-gun, milling in a mixer mill (RETSCH MM 400) for x time at y Hz. ^[b] Isolated yields. **MM** = mixer mill; n.d. = not detected.

		+ °~~`	Pd(OAc) ₂ (1 1,10-phenanthrol <u>Ag₂CO₃ (</u> DMF (0.12 Na ₂ SO ₄ <u>extru</u>	10 mol%) ine (13 mol %) 1.0 equiv.) 2 µL/mg) 4 (20 g) sion	
	5a	б			1a
Entry	т	п (°С)	ш	Screw speed (rpm)	STY (kg/m ³ ·day)
	1		ш		
1	105	115	105	25	/
2	100	110	85	25	1.07×10^{3}
3	90	105	80	25	1.10×10 ³
4	85	100	75	25	1.03×10^{3}
5	90	105	80	18	1.32×10 ³
6	90	105	80	15	1.23×103

Table S12. Optimization of extrusion conditions for Oxidative Heck coupling^[a]

F

^[a] TSE reaction conditions: **5a** (32 mmol), **6** (64 mmol), Pd(OAc)₂ (10 mol%), 1,10-phenanthroline (13 mol%), Ag₂CO₃ (1.0 equiv.), DMF (0.12 μ L/mg) and Na₂SO₄ (20 g) were reacted in a twinscrew extruder (SJZS-7A). Feed rate: 2.63 g/min, temperature as specified, x rpm. STY = total product mass (kg) / (reactant volume (m³) × time (day)

3 General Procedures

F

3.1 General procedure for the synthesis of 4-(4-fluorophenyl) quinoline (3a)

a) Ni catalytic procedure

4-bromoquinoline (1a) (83 mg, 0.4 mmol, 1.0 equiv.), *p*-fluorophenylboronic acid (2) (78 mg, 0.56 mmol, 1.4 equiv.), NiCl₂(dppp) (22 mg, 0.04 mmol, 10 mol%), K₃PO₄(255 mg, 1.2 mmol, 3.0 equiv.), and NaCl (220 mg, 0.5 mass equiv.) were successively added to a 15 mL stainless-steel grinding jar containing one stainless-steel ball with a diameter of 10 mm. The jar was sealed and placed on a mixer mill (RETSCH MM 400), with a high-temperature heat gun installed 3 cm away from the jar (keep external temperature at 92 °C). The mixture was milled at a frequency of 30 Hz for 60 minutes (every 30-minute milling with a 2-minute break). Upon completion of grinding, the heat gun was switched off, and the resulting material was carefully transferred to a beaker. It was then dissolved in 15 mL of water, followed by exhaustive extraction with ethyl acetate (20 mL × 3). The combined organic layers were subsequently washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The crude residue was then purified by low temperature crystallization with petroleum ether to afford the target product (**3a**) as yellow solid (83 mg, 93% yield).

The synthesis of substrates **3a~3f** adhered to the described procedure.

b) Fe catalytic procedure

4-bromoquinoline (1a) (83 mg, 0.4 mmol, 1.0 equiv.), *p*-fluorobenzeneboronic acid (2) (84 mg, 0.6 mmol, 1.5 equiv.), FeCl₃ (7 mg, 0.04 mmol, 10 mol%), K₂CO₃ (166 mg, 1.2 mmol, 3.0 equiv.) NaCl (170 mg, 0.5 mass equiv.) and H₂O (40 μ L, 0.08 μ L/mg) were successively added into a 15 mL stainless-steel grinding jar containing one stainless-steel ball with a diameter of 10 mm. The jar was sealed and placed on a mixer mill (RETSCH MM 400), with a high-temperature heat gun installed 3 cm away from the jar (keep external temperature at 92 °C). The mixture was milled at a frequency of 30 Hz for 30 minutes. Upon completion of grinding, the heat gun was switched off, and the resulting material was carefully transferred to a beaker. It was then dissolved in 15 mL of water, followed by exhaustive extraction with ethyl acetate (20 mL × 3). The combined organic layers were subsequently washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The crude residue was then purified by recrystallization with cold petroleum ether to afford the target product (**3a**) as yellow solid (71 mg, 80% yield).

3.2 Extrusion procedure for the synthesis of 4-(4-fluorophenyl) quinoline (3a)a) Ni catalytic procedure

A mixture of 4-bromoquinoline (1a) (7.50 g, 36 mmol, 1.0 equiv.), *p*-fluorobenzeneboronic acid (2) (7.56 g, 54 mmol, 1.4 equiv.), NiCl₂(dppp) (1.95 g, 3.6 mmol, 10 mol%), and K₃PO₄ (23 g, 108 mmol, 3.0 equiv.) was prepared in a 50 mL beaker by manual stirring with a spatula until homogeneous. The resultant blend was then carefully transferred into a twin-screw extruder, set to operate at a feed rate of 2.63 g/min. During extrusion, the screws rotated at a speed of 18 rpm, while the temperature within the extruder was maintained at 65°C, 75°C, and 80°C in the respective zones. A yellow, viscous solid will emerge from the extruder outlet, with the reactants experiencing an approximate residence time of 15 minutes within the extruder. Once extrusion ceases, recover approximately 18 g of the solid product in the beaker. Stirring the solid with water (150 mL), followed by extracting the aqueous phase with ethyl acetate (150 mL × 3). The combined organic layers were subsequently washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The crude residue was then purified by rinsing with cold petroleum ether to yield the target product (**3a**). The space-time yield for this process is calculated as 2.78×10³ (STY = total product mass (kg) / (reactant volume (m³) × time (day)).

b) Fe catalytic procedure

A mixture of 4-bromoquinoline (1a) (7.50 g, 36 mmol, 1.0 equiv.), *p*-fluorobenzeneboronic acid (2) (7.56 g, 54 mmol, 1.4 equiv.), FeCl₃ (584 mg, 3.6 mmol, 10 mol%), K₂CO₃ (15.00 g, 108 mmol, 3.0 equiv.), NaCl (10.00 g) and H₂O (3.65 mL, 0.08 μ L/mg) was prepared in a 50 mL beaker by manual stirring with a spatula until homogeneous. The resultant blend was then carefully transferred into a twin-screw extruder, set to operate at a feed rate of 2.63 g/min. During extrusion, the screws rotated at a speed of 18 rpm, while the temperature within the extruder was maintained at 80°C, 90°C, and 80°C in the respective zones. A gray, viscous solid will emerge from the extruder outlet, with the reactants experiencing an approximate residence time of 15 minutes within the extruder. Once extrusion ceases, recover approximately 17 g of the solid product in the beaker. Stirring the solid with water (150 mL), followed by extracting the aqueous phase with ethyl acetate (150 mL × 3). The combined organic layers were subsequently washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent

was evaporated under reduced pressure. The crude residue was then purified by recrystallization with cold petroleum ether to yield the target product (**3a**). The space-time yield for this process is calculated as 2.13×10^3 (STY = total product mass (kg) / (reactant volume (m³) × time (day)).

3.3 General procedure for the synthesis of 2-cyclopropyl-4-(4-fluorophenyl)quinoline (5a)

a) 0.2 mmol scale

4-(4-fluorophenyl)quinoline (**3a**) (45 mg, 0.2 mmol, 1.0 equiv.), magnesium (14 mg, 0.6 mmol, 3.0 equiv.), Na₂SO₄ (0.9 g) and bromocyclopropane (**4**) (64 μ L, 0.8 mmol, 4.0 equiv.) were added successively into a 15 mL ball milling jar containing one stainless-steel ball with a diameter of 14 mm. The jar was sealed and placed on a mixer mill (RETSCH MM 400), milling at 30 Hz for 90 minutes (every 30-minute milling with a 2-minute break). Upon completion of grinding, the resulting material was quenched with saturation NH₄Cl solution (10 mL) before transferred into a beaker, followed by exhaustive extraction with ethyl acetate (10 mL × 3). The combined organic layers were subsequently washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was then purified by flash chromatography (petroleum ether/ethyl acetate = 40/1) to give the target product **5a** as a yellow oil (34 mg, 64 % yield).

b) gram scale

4-(4-fluorophenyl)quinoline (**3a**) (1.8 g, 8 mmol, 1.0 equiv.), magnesium (576 mg, 24 mmol, 3.0 equiv.), Na₂SO₄ (14 g) and bromocyclopropane (**4**) (1.3 mL, 16 mmol, 2.0 equiv.) were added successively into a 50 mL ball milling jar containing two stainless-steel balls with a diameter of 14 mm. The jar was sealed and placed on a mixer mill (RETSCH MM 400), milling at 30 Hz for 90 minutes (every 30-minute milling with a 2-minute break). Upon completion of grinding, the resulting material was quenched with saturation NH₄Cl solution (30 mL) before transferred into a beaker, followed by exhaustive extraction with ethyl acetate (30 mL × 3). The combined organic layers were subsequently washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was then purified by flash chromatography (petroleum ether/ethyl acetate = 40/1) to give the target product **5a** as a yellow oil (1.1 g, 51 % yield).

3.4 General procedure for the synthesis of 3-[2-cyclopropyl-4-(4-fluorophenyl)-3quinolin-2-yl]-2-propenal (7a)

2-cyclopropyl-4-(4-fluorophenyl)quinoline (5a) (105 mg, 0.4 mmol, 1.0 equiv.), cinnamaldehyde (6) (34 mg, 0.6 mmol, 1.5 equiv.), Pd(OAc)₂ (9 mg, 0.04 mmol, 10 mol%), 1,10-phenanthroline (9 mg, 0.052 mmol, 13 mol%), Ag₂CO₃ (110 mg, 0.4 mmol, 1.0 equiv.), Na₂SO₄ (500 mg) and DMF (10 μ L, 0.12 μ L/mg) were added successively into a 15 mL ball milling jar containing one stainless-steel ball with a diameter of 10 mm. The jar was sealed and placed on a mixer mill (RETSCH MM 400), with a high-temperature heat gun installed 3 cm away from the jar (keep external temperature at 99 °C). The mixture was milled at a frequency of 30 Hz for 60 minutes (every 30-minute milling with a 2-minute break). Upon completion of grinding, the heat gun was switched off, and the resulting material was carefully transferred to

a beaker. It was then dissolved in 15 mL of water, followed by exhaustive extraction with ethyl acetate (20 mL \times 3). The combined organic layers were subsequently washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The crude residue was then purified by flash chromatography (*n*-hexane/ethyl acetate = 40/1) to afford the target product (**7a**) as a yellow solid (54 mg, 39% yield).

3.5 Extrusion procedure for the synthesis of 3-[2-cyclopropyl-4-(4-fluorophenyl)-3-quinolin-2-yl]-2-propenal (7a)

A mixture of 2-cyclopropyl-4-(4-fluorophenyl)quinoline (5a) (7.56 g, 36 mmol, 1.0 equiv.), Pd(OAc)₂ (808 mg, 3.6 mmol, 10 mol%), 1,10-phenanthroline (842 mg, 4.68 mmol, 13 mol%), Ag₂CO₃ (9.00 g, 36 mmol, 1.0 equiv.), propenyl aldehyde (6) (4.27 mL, 64 mmol, 2.0 equiv.) and Na₂SO₄ (20.00 g) was prepared in a 50 mL beaker by manual stirring with a spatula until homogeneous. The resultant blend was then carefully transferred into a twin-screw extruder, set to operate at a feed rate of 2.63 g/min. During extrusion, the screws rotated at a speed of 18 rpm, while the temperature within the extruder was maintained at 90°C, 105°C, and 80°C in the respective zones. A gray, viscous solid will emerge from the extruder outlet, with the reactants experiencing an approximate residence time of 18 minutes within the extruder. Once extrusion ceases, recover approximately 15 g of the solid product in the beaker. Stirring the solid with water (200 mL), followed by extracting the aqueous phase with ethyl acetate (150 $mL \times 3$). The combined organic layers were subsequently washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The crude residue was then purified by recrystallization with petroleum ether/ethyl acetate to yield the target product (7a). The space-time yield for this process is calculated as 1.32×10^3 (STY = total product mass (kg) / (reactant volume $(m^3) \times time (day)$).

Quantitative nuclear magnetic resonance (NMR) analysis was utilized to confirm the purity of **7a** by using 1,3,5-trimethylbenzene (97% purity) as an internal standard. The product **7a** (15.8 mg) and 1,3,5-trimethylbenzene (6.3 mg) were added into the NMR tube. CDCl₃ was then added, and the mixture was thoroughly homogenized. The NMR analysis was performed using a 400 MHz spectrometer, resulting in a determination of the content of crude product **7a** as 95.7%.

The measurement time was ~ 10 min. 16 FID repetitions (number of scans) resulted in a suitable signal-to-noise ratio. Phasing and integration of the spectrum was performed manually, and the start and end points of each integral region were forced to zero amplitude using a fifth order polynomial baseline correction algorithm. The area of the signals appearing on a ¹H spectrum is directly proportional to the number of protons present in the active volume of the sample.

Hence, using Eq. (1), all the determinations in this study were performed on ¹H NMR spectra through the proportional comparison of the peak areas integrated for both the selected signal from the internal standard and from the substance in question:

.

$$m_{(7a)} = P_{(std)} \cdot \frac{MW_{(7a)}}{MW_{(std)}} \cdot \frac{nH_{(std)}}{nH_{(7a)}} \cdot \frac{m_{(std)}}{P_{(7a)}} \cdot \frac{A_{(7a)}}{A_{(std)}}$$
(1)

where $m_{(7a)}$ and $m_{(std)}$ are the masses (weights) in mg, MW_(7a) and MW_(std) are the molecular weights in mg/mmol, $P_{(7a)}$ and $P_{(std)}$ are the purities, $nH_{(7a)}$ and $nH_{(std)}$ are the number of protons generating the selected signals for integration, $A_{(7a)}$ and $A_{(std)}$ are the areas for the selected peaks of the product **7a** and the internal standard, all respectively.

Figure S1. ¹H (400 MHz, CDCl₃) NMR spectra of compound 7a and internal standard (trimethylbenzene)

4. Comparison of the synthetic routes of 3-[2-cyclopropyl-4-(4-

fluorophenyl)-3-quinolin-2-yl]-2-propenal (7a)

Figure S2. Total mechano-synthesis of pivastatin intermediate 7a

Figure S3. Traditional synthesis method of pitavastatin intermediate 7a (1)³⁻⁵

Figure S4. Traditional synthesis method of pitavastatin intermediate 7a (2)⁶⁻⁸

Figure S5. Traditional synthesis method of pitavastatin intermediate 7a (3)⁹⁻¹¹

5. Calculations of *E*-factor for the mechanochemical method

The E-factor calculation¹² was derived utilizing upscaled reactions.

 $E - factor = \frac{Total \ mass \ of \ waste}{Mass \ of \ products}$

Step 1 (Ni catalysis)

$$E - factor = \frac{(7500 + 7560 + 1950 + 2300 - 6110) mg}{6100 mg} = 5.55$$

Step 2

a) without grinding auxiliary

$$E - factor = \frac{(1800 + 1936 + 576 - 1100) mg}{1100 mg} = 2.92$$
b) with grinding auxiliary

$$E - factor = \frac{(1800 + 1936 + 576 + 14000 - 1100) mg}{1100 mg} = 15.65$$
Stan 2

Step 3

a) without grinding auxiliary $E - factor = \frac{(7560 + 3586 + 808 + 842 + 9000 + 4356 - 3760) mg}{3760 mg} = 5.96$ b) with grinding auxiliary $E - factor = \frac{(7560 + 3586 + 808 + 842 + 9000 + 4356 + 20000 - 3760) mg}{3760 mg} = 11.27$

6. Characterization Data for Products

4-(4-fluorophenyl)quinoline (3a)¹³

Yellow solid (Ni catalysis: 83 mg, 93% yield; Fe catalysis: 71 mg, 80% yield); mp 42.7~43.2 °C; ¹H NMR (400 MHz, chloroform-*d*) δ 8.94 (d, *J* = 4.4 Hz, 1H), 8.19 (d, *J* = 8.4 Hz, 1H), 7.89 – 7.86 (m, 1H), 7.74 (m, 1H), 7.54 – 7.45 (m, 3H), 7.31 (d, *J* = 4.4 Hz, 1H), 7.25 – 7.20 (m, 2H). ¹³C NMR (100 MHz, chloroform-*d*) δ 162.9 (d, *J*_{C-F} = 248.3 Hz), 149.8, 148.5, 147.7, 133.9 (d, *J*_{C-F} = 3.3 Hz), 131.3 (d, *J*_{C-F} = 8.2 Hz), 129.8, 129.6, 126.9, 126.8, 125.6, 115.7 (d, *J*_{C-F} = 21.7 Hz). ¹⁹F NMR (377 MHz, chloroform-*d*) δ -113.13.

5-chloro-7-iodo-8-methoxyquinoline (3p)

Yellow solid (281 mg, 88 % yield); mp 76.9~77.5 °C. ¹**H NMR** (400 MHz, DMSO- d_6) δ 9.02 (dd, J = 4.4, 1.6 Hz, 1H), 8.54 (dd, J = 8.4, 1.6 Hz, 1H), 8.13 (s, 1H), 7.76 (dd, J = 8.4, 4.0 Hz, 1H), 4.05 (s, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 155.7, 151.1, 141.7, 134.6, 133.2, 126.7, 125.60, 123.2, 91.2, 61.8. **HR-MS** (ESI) *m/z:* calculated for C₁₀H₈³⁵ClINO 319.9339 [M+H]⁺, found 319.9334.

2-cyclopropyl-4-(4-fluorophenyl)quinoline (5a)

Yellow oil (34 mg, 64% yield); ¹**H NMR** (400 MHz, chloroform-*d*) δ 8.04 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.70 – 7.61 (m, 1H), 7.51 – 7.43 (m, 2H), 7.44 – 7.35 (m, 2H), 7.26 – 7.17 (m, 2H), 2.33 – 2.22 (m, 1H), 1.25 – 1.16 (m, 2H), 1.11 (m, 2H). ¹³**C NMR** (100 MHz, chloroform-*d*) δ 162.9, 162.8 (d, $J_{C-F} = 246$ Hz), 148.4, 147.3, 134.3 (d, $J_{C-F} = 3.3$ Hz), 131.2 (d, $J_{C-F} = 8.1$ Hz), 129.4, 129.0, 126.5 (2C), 125.5, 125.3, 119.7, 115.7 (2C), 18.0, 10.4 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₈H₁₄N¹⁹F 264.1189 [M+H]⁺, found 264.1183. ¹⁹F NMR

(377 MHz, chloroform-d) δ -113.53.

2-cyclopropyl-4-phenylquinoline (5b)

Yellow oil (24 mg, 48% yield); ¹**H NMR** (400 MHz, chloroform-*d*) δ 8.06 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.70 – 7.62 (m, 1H), 7.55 – 7.45 (m, 7H), 7.39 (m, J = 1H), 2.36 – 2.23 (m, 1H), 1.24 – 1.17 (m, 2H), 1.17 – 1.09 (m, 2H). ¹³**C NMR** (100 MHz, chloroform-*d*) δ 162.9, 148.4, 148.3, 138.4, 129.5, 129.3, 128.9 (2C), 128.5 (2C), 128.3, 125.7, 125.3 (2C), 119.5, 18.1, 10.3 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₈H₁₅N 246.1283 [M+H]⁺, found 246.1277.

2-cyclopropyl-4-(4-methoxyphenyl)quinoline (5c)

Yellow oil (28 mg, 50% yield), ¹**H NMR** (400 MHz, chloroform-*d*) δ 8.05 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.69 – 7.61 (m, 1H), 7.49 – 7.41 (m, 2H), 7.43 – 7.34 (m, 1H), 7.07 (d, *J* = 2.9 Hz, 2H), 7.04 (s, 1H), 3.90 (s, 3H), 2.30 (m, 1H), 1.19 (m, 2H), 1.12 (m, 2H). ¹³**C NMR** (100 MHz, chloroform-*d*) δ 162.9, 160, 130.8 (2C), 130.6, 129.3, 128.7 (2C), 125.7, 125.5, 125.3, 119.3 (2C), 114.0 (2C), 55.4, 17.9, 10.4 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₉H₁₇NO 276.1388 [M+H]⁺, found 276.1383.

2-cyclopropyl-4-(4-(trifluoromethyl)phenyl)quinoline (5d)

Yellow oil (30 mg, 48% yield); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.05 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.62 (d, *J* = 7.8 Hz, 2H), 7.43 – 7.37 (m, 1H), 7.12 (s, 1H), 2.34 – 2.22 (m, 1H), 1.25 – 1.18 (m, 2H), 1.16 – 1.08 (m, 2H). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 162.9, 148.5, 146.6, 142.1, 130.5 (q, *J*_{C-F} = 30 Hz),

129.9 (2C), 129.4, 129.3, 125.6 (2C), 125.5 (d, $J_{C-F} = 8$ Hz), 125.1, 124.9, 121.4 (d, $J_{C-F} = 270$ Hz), 119.8, 18.1, 10.4 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₉H₁₄¹⁹F₃N 314.1157 [M+H]⁺, found 314.1151. ¹⁹F NMR (377 MHz, chloroform-*d*) δ -62.54.

4-(3-chlorophenyl)-2-cyclopropylquinoline (5e)

Yellow oil (28 mg, 50% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.04 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.66 (m, 1H), 7.68 – 7.63 (m, 1H), 7.49 (d, J = 1.9 Hz, 2H), 7.46 – 7.43 (m, 2H), 7.42 – 7.35 (m, 2H), 7.10 (s, 1H), 2.30 – 2.22 (m, 1H), 1.24 – 1.19 (m, 2H), 1.14 – 1.09 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 162.9, 148.4, 146.7, 140.2, 134.5, 129.8, 129.5 (2C), 129.1, 128.4, 127.8, 125.6, 125.2, 124.9, 119.7, 18.1, 10.4 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₈H₁₄³⁵CIN 280.0893 [M+H]⁺, found 280.0888.

2-cyclopropyl-4-(o-tolyl)quinoline (5f)

Yellow oil (26 mg, 51% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.06 (d, J = 8.4 Hz, 1H), 7.69 – 7.60 (m, 1H), 7.39 – 7.31 (m, 5H), 7.21 (d, J = 7.6 Hz, 1H), 7.03 (s, 1H), 2.04 (s, 3H), 2.33 – 2.26 (m, 1H), 1.24 – 1.18 (m, 2H), 1.16 – 1.10 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 163.0, 137.8, 136.1, 130.1, 129.6, 129.4 (2C), 128.7 (2C), 128.3, 125.9, 125.8 (2C), 125.4, 119.5, 19.9, 18.0, 10.5 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₉H₁₇N 260.1439 [M+H]⁺, found 260.1433.

2-cyclopropyl-4-methylquinoline (5g)

Yellow oil (17 mg, 47% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.97 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.68 – 7.59 (m, 1H), 7.48 – 7.42 (m, 1H), 6.99 (s, 1H), 2.64 (s, 3H), 2.24 – 2.16 (m, 1H), 1.17 – 1.11 (m, 2H), 1.12 – 1.02 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 163.02, 147.81, 143.80, 129.08 (2C), 126.84, 124.96, 123.58, 119.86, 18.70, 17.95, 9.95 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₃H₁₃N 184.1126 [M+H]⁺, found 184.1121.

4-bromo-2-cyclopropylquinoline (5h)

Yellow oil (18 mg, 36% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.55 – 7.47 (m, 2H), 2.22 – 2.14 (m, 1H), 1.22 – 1.13 (m, 2H), 1.13 – 1.08 (m, 2H). ¹³**C NMR** (100 MHz, chloroform-*d*) δ 163.5, 148.5, 133.8, 130.3, 129.0, 126.6, 126.4, 126.2, 123.5, 17.8, 10.6 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₂H₁₀⁷⁹BrN 248.0075 [M+H]⁺, found 248.0069.

2-cyclopropyl-4-methoxypyridine (5i)

Yellow oil (8 mg, 28% yield); ¹H NMR (400 MHz, chloroform-*d*) δ 8.25 (d, *J* = 6 Hz, 1H), 6.64 (d, *J* = 2.4 Hz, 1H), 6.58 (dd, *J* = 6, 2.4 Hz, 1H), 3.82 (s, 3H), 2.03 – 1.93 (m, 1H), 1.05 – 0.96 (m, 2H), 0.98 – 0.92 (m, 2H). ¹³C NMR (100 MHz, chloroform-*d*) δ 165.79, 164.55, 150.31, 106.93 (2C), 54.97, 17.28, 9.55 (2C). HR-MS (ESI) *m/z:* calculated for C₁₉H₁₁NO, 150.0919 [M+H]⁺, found 150.0913.

4-(tert-butyl)-2-cyclopropylpyridine (5j)

Yellow oil (18 mg, 53% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.33 (d, *J* = 5.2 Hz, 1H), 7.13 (d, *J* = 1.2 Hz, 1H), 7.02 (dd, *J* = 5.6, 2 Hz, 1H), 2.06 – 1.95 (m, 2H), 1.30 (s, 10H), 1.05 – 0.99 (m, 2H), 0.99 – 0.93 (m, 2H). ¹³**C NMR** (100 MHz, chloroform-*d*) δ 162.4, 159.8, 149.0, 118.0 (2C), 34.5, 30.5, 17.2, 9.6(2C). **HR-MS** (ESI) *m/z:* calculated for C₁₂H₁₇N 176.1439 [M+H]⁺, found 176.1434.

2-cyclopropyl-4-methylpyrimidine (5k)

Yellow oil (9 mg, 33% yield); ¹H NMR (400 MHz, chloroform-*d*) δ 8.81 (s, 1H), 6.98 (s, 1H), 1.92 – 1.82 (m, 1H), 1.10 – 1.06 (m, 2H), 1.06 – 0.97 (m, 2H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.49, 165.53, 158.23, 118.37, 23.85, 16.69, 10.90 (2C). HR-MS (ESI) *m/z*: calculated for C₈H₁₀N₂ 135.0922 [M+H]⁺, found 135.0917.

2-cyclopropylbenzo[d]thiazole (5i)

Yellow oil (15 mg, 42% yield); ¹**H NMR** (400 MHz, chloroform-*d*) δ 7.89 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.37 (m, 1H), 7.35 – 7.26 (m, 1H), 2.44 – 2.35 (m, 1H), 1.23 (m, 4H). ¹³**C NMR** (100 MHz, chloroform-*d*) δ 174.6, 153.2, 134.1, 125.9, 124.4, 122.0, 121.4, 15.3, 11.8 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₀H₉NS 176.0534 [M+H]⁺, found 176.0529.

3-cyclopropyl-1-methyl-1*H*-indazole (5m)

Yellow oil (12 mg, 36% yield); ¹**H NMR** (400 MHz, chloroform-*d*) δ 7.74 (d, *J* = 8.0 Hz, 1H), 7.39 – 7.29 (m, 3H), 7.13 – 7.07 (m, 2H), 3.97 (s, 3H), 2.27 – 2.16 (m, 1H), 1.07 – 1.03 (m, 4H). ¹³**C NMR** (100 MHz, chloroform-*d*) δ 146.5, 141.0, 126.2, 122.8, 120.4, 119.5, 108.9, 35.1, 8.1, 7.0 (2C). **HR-MS** (ESI) *m/z*: calculated for C₁₁H₁₂N₂ 173.1079 [M+H]⁺, found 173.1073.

8-cyclopropyl-1,3,9-trimethyl-3,9-dihydro-1*H*-purine-2,6-dione (5n)

Yellow oil (21 mg, 45% yield); ¹**H NMR** (400 MHz, chloroform-*d*) δ 3.99 (s, 3H), 3.50 (s, 3H), 3.38 (s, 3H), 1.92 – 1.79 (m, 1H), 1.14 – 1.07 (m, 4H). ¹³**C NMR** (100 MHz, chloroform-*d*) δ 155.7, 155.0, 151.8, 147.9, 107.3, 31.5, 29.7, 27.8, 8.4, 7.2 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₁H₁₄N₄O₂ 235.1195 [M+H]⁺, found 235.1190.

9-benzyl-8-cyclopropyl-1,3-dimethyl-3,9-dihydro-1*H*-purine-2,6-dione(50)

Yellow oil (27 mg, 43% yield); ¹**H NMR** (400 MHz, chloroform-*d*) δ 7.37 – 7.27 (m, 5H), 7.27 – 7.20 (m, 3H), 3.52 (s, 3H), 3.38 (s, 3H), 1.90 – 1.79 (m, 1H), 1.15 – 1.08 (m, 2H), 1.07 – 0.99 (m, 2H). ¹³**C NMR** (100 MHz, chloroform-*d*) δ 156.0, 154.8, 151.8, 148.2, 136.3, 128.9 (2C), 127.9 (3C), 127.0, 47.9, 29.7, 27.9, 8.8, 7.8 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₇H₁₈N₄O₂

311.1508 [M+H]⁺, found 311.1503.

5-chloro-2-cyclopropyl-7-iodo-8-methoxyquinoline (5p)

Yellow oil (27 mg, 38% yield); ¹**H NMR** (600 MHz, chloroform-*d*) δ 8.32 (d, *J* = 8.7 Hz, 1H), 7.81 (s, 1H), 7.38 (d, *J* = 8.7 Hz, 1H), 4.15 (s, 3H), 2.30 – 2.22 (m, 1H), 1.30 – 1.21 (m, 2H), 1.17 – 1.09 (m, 2H). ¹³**C NMR** (150 MHz, chloroform-*d*) δ 164.3, 155.1, 133.5, 133.3, 126.4, 125.9, 121.5, 89.8, 62.1, 17.9, 11.6 (2C). **HR-MS** (ESI) *m/z:* calculated for C₁₃H₁₁³⁵CIINO 359.9652 [M+H]⁺, found 359.9647.

3-[2-Cyclopropyl-4-(4-fluorophenyl)-3-quinolinyl]-2-propenal (7a)

Yellow solid (38 mg, 43% yield); mp 132.8~133.7 °C; ¹H NMR (400 MHz, chloroform-*d*) δ 9.51 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.66 (s, 1H), 7.56 (d, *J* = 16.4 Hz, 1H), 7.42 – 7.29 (m, 2H), 7.29 – 7.16 (m, 4H), 6.45 (dd, *J* = 16.4, 7.6 Hz, 1H), 2.35 (s, 1H), 1.43 (m, 2H), 1.10 (m, 2H). ¹³C NMR (100 MHz, chloroform-*d*) δ 193.4, 162.6 (d, *J*_{C-F} = 148 Hz), 159.4, 149.9, 147.5, 146.4, 135.6, 131.9 (d, *J*_{C-F} = 4 Hz), 131.5 (2C), 130.2, 129.0, 126.4 (2C), 126.1, 126.0 (d, *J*_{C-F} = 68 Hz) 115.6 (2C), 16.5, 10.6 (2C). HR-MS (ESI) *m/z*: calculated for C₂₁H₁₆¹⁹FNO 318.1294 [M+H]⁺, found 318.1289. ¹⁹F NMR (377 MHz, chloroform-*d*) δ -113.53.

7. References

- 1. T. Drennhaus, L. Öhler, S. Djalali, S. Höfmann, C. Müller, J. Pietruszka and D. Worgull, *Adv. Synth. Catal.*, 2020, **362**, 2385-2396.
- 2. S. Saravana Kumar, R. Selva Kumar and S. K. Ashok Kumar, J. Mol. Struct., 2020, 1212, 128143.
- 3. Y. Fujikawa, M. Suzuki and H. Iwasaki, JP Pat., 05310700A.
- 4. C.-Z. Li and S.-Y. Li, CN Pat., 104496898A, 2015.
- 5. K. Nagashima, T. Fukumoto, T. Hayashibara and M. Torihara, World Pat., 2004041787, 2004.
- 6. Z. Charles, D. Stecker and M. Jukic, World Pat., 2012013325, 2012.
- R. Satheeshkumar, K. Prabha, K. N. Vennila, K. Sayin, E. Güney, W. Kaminsky and R. Acevedo, J. Mol. Struct., 2022, 1267, 133552.
- 8. C. M. Counceller, C. C. Eichman, B. C. Wray and J. P. Stambuli, Org. Lett., 2008, 10, 1021-1023.
- 9. Y.-B. Wan and X.-P. Hu, Org. Lett., 2022, 24, 5797-5801.
- 10. P.-H. Li, L.-Z. Yu, X.-Y. Zhang and M. Shi, Org. Lett., 2018, 20, 4516-4520.
- 11. Y. Ohara, M. Suzuki, Y. Yanagawa and Y. Takada, World Pat., 0005213, 2003.

- 12. P. Yan, R. Zeng, B. Bao, X.-M. Yang, L. Zhu, B. Pan, S.-L. Niu, X.-W. Qi, Y.-L. Li and Q. Ouyang, *Green Chem.*, 2022, **24**, 9263-9268.
- 13. R. S. J. Proctor, H. J. Davis and R. J. Phipps, Science, 2018, 360, 419-422.

8. Spectra for All Compounds

Figure S6. ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz) NMR spectra of compound 3a

Figure S7. ¹⁹F (377 MHz, CDCl₃) NMR spectra of compound 3a

Figure S8. ¹H (400 MHz, DMSO-*d*₆) and ¹³C (100 MHz) NMR spectra of compound 3a

Figure S9. 1 H (400 MHz, CDCl₃) and 13 C (100 MHz) NMR spectra of compound 5a

Figure S11. ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz) NMR spectra of compound 5b

Figure S12. 1 H (400 MHz, CDCl₃) and 13 C (100 MHz) NMR spectra of compound 5c

Figure S13. 1 H (600 MHz, CDCl₃) and 13 C (150 MHz) NMR spectra of compound 5d

Figure S15. 1 H (400 MHz, CDCl₃) and 13 C (100 MHz) NMR spectra of compound 5e

Figure S16. 1 H (400 MHz, CDCl₃) and 13 C (100 MHz) NMR spectra of compound 5f

Figure S17. 1 H (400 MHz, CDCl₃) and 13 C (100 MHz) NMR spectra of compound 5g

Figure S18. ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz) NMR spectra of compound 5h

Figure S19. ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz) NMR spectra of compound 5i

Figure S20. ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz) NMR spectra of compound 5j

Figure S21. ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz) NMR spectra of compound 5k

Figure S22. 1 H (400 MHz, CDCl₃) and 13 C (100 MHz) NMR spectra of compound 5l

Figure S23. 1 H (400 MHz, CDCl₃) and 13 C (100 MHz) NMR spectra of compound 5m

Figure S24. ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz) NMR spectra of compound 5n

Figure S25. ¹H (400 MHz, CDCl₃) and ¹³C (100 MHz) NMR spectra of compound 50

Figure S26. 1 H (600 MHz, CDCl₃) and 13 C (150 MHz) NMR spectra of compound 5p

Figure S27. ¹H (600 MHz, CDCl₃) and ¹³C (150 MHz) NMR spectra of compound 7a

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

Figure S28. ¹⁹F (377 MHz, CDCl₃) NMR spectra of compound 7a