Supporting Information

Al₂O₃ promoted mechanochemical nucleophilic aromatic substitution

Luca Vaghi, Eva Palomba, Antonio Papagni

University of Milano-Bicocca, Department of Materials Science, via R. Cozzi 55, 20125 Milano.

Table of Contents

- S2. Images of the work-up procedure
- **S3.** Synthetic procedures and compounds characterization
- **S13.** Scale-up experiment
- S14. NMR and IR spectra

Images of the work-up procedure

Figure S1. Crude recovery from the milling reactor.

Figure S2. Setup for the purification on silica pad.

Synthetic procedures and compounds characterization

General information

All reagents and solvents were purchased from commercial sources and used without further purification. Reactions were performed in a SPEX® 8000M mixer/mill using 50 mL grinding reactor (ZrO₂) and 4 milling balls (1 cm diameter, ZrO₂). The following materials were used as milling auxiliaries: SiO₂ (Sigma-Aldrich 717177); TiO₂ (Sigma-Aldrich 14021); Al₂O₃ (Sigma-Aldrich 11028). Chromatographic purifications were performed using Merck 9385 silica gel, pore size 60 Å (230–400 mesh). Melting points were measured with a Stanford Research Systems Optimelt apparatus. ¹H, ¹³C and ¹⁹F spectra were recorded with a Bruker AVANCE III HD 400 MHz spectrometer (¹H: 400 MHz, ¹³C: 101 MHz, ¹⁹F 376 MHz) chemical shifts (δ) are expressed in parts per million (ppm), and coupling constants are given in Hz. Splitting patterns are indicated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. IR spectra were recorded with a PerkinElmer Spectrum 100 FT-IR spectrometer equipped with universal ATR sampling accessory. Elemental analyses were obtained with an Elementar vario MICRO cube instrument.

General Procedure for the mechanochemical S_NAr of aryl fluorides

Aryl fluoride (2 mmol), nucleophile (equivalents stated in the text) and auxiliary (5 g) were added to the zirconia reactor equipped with four zirconia milling balls (d=1 cm). The mixture was shaken at 15 Hz for the time stated in the text. The powdery residue was recovered and directly put over a short pad of silica gel (a small amount of silica gel can be mixed before to the residue if elution results difficult), vacuum-aided elution with the proper solvent mixture and subsequent removal of the volatiles under reduced pressure afforded the desired product in a pure form.

Isolated compounds

1-(4-nitrophenyl)piperidine (**3a**). 376 mg, 91%; yellow solid; mp 103-105°C; $R_f = 0.35$ (SiO₂, *n*-heptane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.07 (m, 2H), 6.82 – 6.75 (m, 2H), 3.46 – 3.41 (m, 4H), 1.73 – 1.65 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 154.9, 137.4, 126.1, 112.3, 48.3, 25.3, 24.2. The physical and spectroscopic data are in accordance with those reported in the literature.¹

4-(4-nitrophenyl)morpholine (**3b**). 401 mg, 96%; yellow solid; mp 150-151 °C; $R_f = 0.33$ (SiO₂, EtOAc/*n*-heptane 1:1); ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.10 (m, 2H), 6.85 – 6.79 (m, 2H), 3.88 – 3.83 (m, 4H), 3.39 – 3.34 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 155.0, 138.9, 125.9, 112.6, 66.3, 47.1. The physical and spectroscopic data are in accordance with those reported in the literature.²

1-(4-nitrophenyl)pyrrolidin-3-ol (**3c**). 333 mg, 80%; yellow solid; mp 180-181 °C; $R_f = 0.55$ (SiO₂, *n*-heptane/EtOAc 8:2); ¹H NMR (400 MHz, DMSO-d₆) δ 8.08 – 8.02 (m, 2H), 6.64 – 6.58 (m, 2H), 5.10 (d, J = 3.6 Hz, 1H), 4.47 – 4.40 (m, 1H), 3.54 – 3.43 (m, 3H), 3.25 (d, J = 11.2 Hz, 1H), 2.12 – 2.00 (m, 1H), 1.99 – 1.90 (m, 1H); ¹³C NMR (101 MHz, DMSO-d₆) δ 152.0, 135.3, 126.0, 110.8, 69.0, 56.2, 45.9, 33.4; IR (ATR): 3436, 3110, 3089, 2949, 2921, 2857, 2666, 2556, 2391, 1603, 1570, 1522, 1471, 1438, 1406, 1365, 1293, 1225, 1194, 1163, 1100, 977, 952, 868, 820, 753, 728, 693, 681, 625, 544 cm⁻¹; Anal. Calcd. for C₁₀H₁₂N₂O₃: C, 57.69; H, 5.81; N, 13.45. Found: C, 57.58; H, 5.83; N, 13.50.

N-butyl-4-nitroaniline (**3d**). 124 mg, 32%; yellow solid; mp 55-56 °C; $R_f = 0.26$ (SiO₂, *n*-heptane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.04 (m, 2H), 6.54 – 6.47 (m, 2H), 4.50 (s, 1H), 3.21 (td, *J* = 7.1, 5.5 Hz, 2H), 1.69 – 1.56 (m, 2H), 1.50 – 1.38 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.6, 137.5, 126.5, 110.9, 43.1, 31.1, 20.1, 13.8. The physical and spectroscopic data are in accordance with those reported in the literature.³

N-hexadecyl-4-nitroaniline (**3e**). 24 mg, 3%; yellow solid; mp 74-75 °C; $R_f = 0.38$ (SiO₂, *n*-heptane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.05 (m, 2H), 6.54 – 6.48 (m, 2H), 4.46 (s, 1H), 3.25 – 3.16 (m, 2H), 1.72 – 1.57 (m, 4H), 1.43 – 1.20 (m, 24H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 137.8, 126.5, 110.9, 43.4, 31.9, 29.91 – 29.20 (m, 10C), 29.1, 27.0, 22.7, 14.1; IR (ATR): 3348, 2956, 2915, 2848, 1637, 1603, 1541, 1469, 1439, 1362, 1319, 1294, 1284, 1270, 1186, 1153, 1134, 1108, 1000, 839, 753, 723, 700, 662, 546 cm⁻¹; Anal. Calcd. for C₂₂H₃₈N₂O₂: C, 72.88; H, 10.56; N, 7.73. Found: C, 73.01; H, 10.64; N, 7.68.

4-[(4-nitrophenyl)amino]butan-1-ol (**3h**). 220 mg, 52%; yellow solid; mp 135-136 °C; $R_f = 0.40$ (SiO₂, EtOAc/*n*-heptane 8:2); ¹H NMR (400 MHz, DMSO-d₆) δ 7.98 (d, J = 9.3 Hz, 2H), 7.28 (t, J = 5.4 Hz, 1H), 6.66 – 6.59 (m, 2H), 4.45 (t, J = 5.1 Hz, 1H), 3.44 (dd, J = 11.4, 6.3 Hz, 2H), 3.14 (dd, J = 12.5, 6.9 Hz, 2H), 1.65 – 1.46 (m, 4H); ¹³C NMR (101 MHz, DMSO-d₆) δ 155.1, 135.9, 126.7, 111.1, 60.8, 42.7, 30.4, 25.5; IR (ATR): 3440, 3274, 3174, 3124, 2936, 2892, 2863, 1599, 1590, 1542, 1506, 1476, 1462, 1286, 1270, 1178, 1132, 1104, 1057, 1030, 996, 833, 753, 742, 697, 662, 628, 544 cm⁻¹; Anal. Calcd. for C₁₀H₁₄N₂O₃: C, 57.13; H, 6.71; N, 13.33. Found: C, 57.22; H, 6.68; N, 13.31.

2-[(4-nitrophenyl)amino]ethanol (**3i**). 227 mg, 62%; yellow solid; mp 109-110 °C; $R_f = 0.34$ (SiO₂, EtOAc/*n*-heptane 1:1); ¹H NMR (400 MHz, DMSO-d₆) δ 7.98 (d, J = 9.3 Hz, 2H), 7.29 (t, J = 5.5 Hz, 1H), 6.66 (d, J = 9.4 Hz, 2H), 4.82 (t, J = 5.4 Hz, 1H), 3.58 (q, J = 5.7 Hz, 2H), 3.24 (q, J = 5.7 Hz, 2H); ¹³C NMR (101 MHz, DMSO-d₆) δ 155.2, 136.0, 126.7, 111.2, 59.7, 45.5. The physical and spectroscopic data are in accordance with those reported in the literature.⁴

2-[ethyl(4-nitrophenyl)amino]ethanol (**3**j). 17 mg, 4%; yellow solid; mp 67-68 °C; $R_{\not=}$ 0.29 (SiO₂, EtOAc/*n*-heptane 1:1); ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 2H), 6.60 – 6.54 (m, 2H), 3.81 (t, J = 6.0 Hz, 2H), 3.53 (t, J = 6.0 Hz, 2H), 3.48 (q, J = 7.3 Hz, 2H), 2.86 (s, 1H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 136.1, 126.4, 110.3, 59.7, 52.3, 46.0, 11.8; IR (ATR): 3398, 3155, 2971, 2933, 2903, 2873, 2681, 2406, 1594, 1579, 1517, 1490, 1478, 1468, 1438, 1412, 1391, 1374, 1355, 1305, 1280, 1224, 1198, 1188, 1134, 1113, 1081, 1073, 1035, 1021, 997, 951, 848, 823, 809, 796, 778, 750, 695, 633, 619, 564, 532 cm⁻¹; Anal. Calcd. for C₁₀H₁₄N₂O₃: C, 57.13; H, 6.71; N, 13.33. Found: C, 57.27; H, 6.70; N, 13.28.

2-piperidin-1-ylpyrazine (**5a**). 274 mg, 84%; yellow solid; mp 35-36 °C; $R_f = 0.20$ (SiO₂, *n*-heptane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 1.5 Hz, 1H), 8.00 (dd, J = 2.6, 1.6 Hz, 1H), 7.74 (d, J = 2.6 Hz, 1H), 3.58 – 3.50 (m, 4H), 1.68 – 1.57 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.1, 141.7, 131.9, 131.1, 45.5, 25.3, 24.5. The physical and spectroscopic data are in accordance with those reported in the literature.⁵

4-pyrazin-2-ylmorpholine (**5b**). 227 mg, 69%; pale grey solid; mp 46-47 °C, $R_f = 0.23$ (SiO₂, *n*-heptane/EtOAc 1:1); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 1.5 Hz, 1H), 8.06 (dd, J = 2.6, 1.6 Hz, 1H), 7.88 (d, J = 2.6 Hz, 1H), 3.84 – 3.79 (m, 4H), 3.57 – 3.52 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 155.0, 141.7, 133.5, 130.9, 66.5, 44.7. The physical and spectroscopic data are in accordance with those reported in the literature.⁶

1-pyrazin-2-ylpyrrolidin-3-ol (**5c**). 284 mg, 86%; pale grey solid; mp 87-88 °C; $R_f = 0.17$ (SiO₂, EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 2.7, 1.5 Hz, 1H), 7.80 (d, J = 1.5 Hz, 1H), 7.72 (d, J = 2.7 Hz, 1H), 4.63 – 4.57 (m, 1H), 3.66 – 3.48 (m, 4H), 3.38 (s, 1H),

2.15 – 2.07 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 142.2, 131.0, 130.3, 70.3, 54.8, 44.4, 33.9; IR (ATR): 3235, 3048, 2954, 2919, 2861, 1580, 1516, 1493, 1465, 1438, 1379, 1352, 1319, 1296, 1255, 1224, 1204, 1180, 1128, 1109, 1075, 1009, 994, 968, 915, 871, 826, 716, 623, 536 cm⁻¹; Anal. Calcd. for C₈H₁₁N₃O: C, 58.17; H, 6.71; N, 25.44. Found: C, 58.17; H, 6.70; N, 25.42.

4-(pyrazin-2-ylamino)butan-1-ol (**5h**). 209 mg, 63%; Colorless oil; $R_f = 0.28$ (SiO₂, EtOAc/EtOH 9:1); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 2.8, 1.5 Hz, 1H), 7.78 (d, J = 1.4 Hz, 1H), 7.62 (d, J = 2.8 Hz, 1H), 5.48 (t, J = 5.4 Hz, 1H), 3.99 (s, 1H), 3.59 (t, J = 6.1 Hz, 2H), 3.32 – 3.23 (m, 2H), 1.69 – 1.52 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 141.8, 132.2, 132.0, 62.0, 41.1, 29.8, 25.9; IR (ATR): 3289, 2936, 2864, 1596, 1519, 1464, 1434, 1397, 1342, 1292, 1204, 1179, 1151, 1105, 1057, 1001, 914, 872, 822, 753, 623, 536 cm⁻¹; Anal. Calcd. for C₈H₁₃N₃O: C, 57.46; H, 7.84; N, 25.13. Found: C, 57.61; H, 7.78; N, 25.09.

2-(pyrazin-2-ylamino)ethanol (**5i**). 168 mg, 61%; pale ochre solid; mp 55-56 °C; $R_f = 0.31$ (SiO₂, EtOAc/EtOH 9:1); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 2.8, 1.5 Hz, 1H), 7.84 (d, J = 1.5 Hz, 1H), 7.68 (d, J = 2.8 Hz, 1H), 5.59 (s, 1H), 4.49 (s, 1H), 3.80 – 3.74 (m, 2H), 3.51 – 3.44 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 154.9, 141.4, 132.9, 132.3, 61.8, 44.0; IR (ATR): 3272, 2925, 2864, 1595, 1519, 1464, 1434, 1397, 1342, 1292, 1204, 1179, 1151, 1105, 1057, 1001, 914, 872, 822, 753, 623, 536 cm⁻¹; Anal. Calcd. for C₆H₉N₃O: C, 51.79; H, 6.52; N, 30.20. Found: C, 51.88; H, 6.59; N, 30.07.

1-(2-nitrophenyl)piperidine (**6a**). 405 mg, 98%; orange solid; mp 78-79 °C; $R_f = 0.47$ (SiO₂, *n*-heptane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 8.1, 1.6 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.11 (dd, J = 8.3, 0.8 Hz, 1H), 6.98 – 6.92 (m, 1H), 3.05 – 2.97 (m, 4H), 1.76 – 1.66 (m, 4H), 1.63 – 1.55 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 142.7, 133.3, 126.0, 120.8, 120.6, 52.9, 25.9, 24.0. The physical and spectroscopic data are in accordance with those reported in the literature.⁷

1-(3-methyl-4-nitrophenyl)piperidine (**8a**). 416 mg, 95%; yellow solid; mp 53-54 °C; $R_f = 0.36$ (SiO₂, *n*-heptane/EtOAc 9:1); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 9.3 Hz, 1H), 6.64 (dd, J = 9.3, 2.9 Hz, 1H), 6.58 (d, J = 2.8 Hz, 1H), 3.42 – 3.35 (m, 4H), 2.60 (s, 3H), 1.69 – 1.62 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 137.9, 137.4, 127.9, 115.8, 110.9, 48.3, 25.3, 24.6, 22.7. The physical and spectroscopic data are in accordance with those reported in the literature.⁸

1-[4-nitro-3-(trifluoromethyl)phenyl]piperidine (**9a**). 544 mg, 99%; yellow solid; mp 71-72 °C; $R_f = 0.44$ (SiO₂, *n*-heptane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 9.3 Hz, 1H), 7.10 (d, J = 2.7 Hz, 1H), 6.87 (dd, J = 9.3, 2.9 Hz, 1H), 3.48 – 3.40 (m, 4H), 1.73 – 1.64 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 153.3, 135.7, 128.9, 126.3 (q, J = 32.7 Hz), 122.46 (q, J = 273.3 Hz),114.2, 111.8 (q, J = 6.4 Hz), 48.3, 25.2, 24.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.20. The physical and spectroscopic data are in accordance with those reported in the literature.⁹

2-nitro-5-(1-piperidinyl)benzonitrile (**10a**). 447 mg, 97%; yellow solid; mp 127-128 °C; $R_f = 0.38$ (SiO₂, *n*-heptane/EtOAc 6:4); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 9.6 Hz, 1H), 7.08 (d, J = 3.0 Hz, 1H), 6.93 (dd, J = 9.6, 3.0 Hz, 1H), 3.51 – 3.44(m, 4H), 1.78 – 1.63 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 153.3, 136.1, 128.0, 118.5, 116.4, 114.9, 110.3, 48.2, 25.2, 23.9. The physical and spectroscopic data are in accordance with those reported in the literature.¹⁰

2-nitro-5-(1-piperidinyl)aniline (**11a**). 385 mg, 87%; orange solid; mp 104-105 °C; $R_f = 0.41$ (SiO₂, *n*-heptane/EtOAc 6:4); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 9.7 Hz, 1H), 6.25 (dd, J = 9.8, 2.7 Hz, 1H), 6.16 (br s, 2H), 5.92 (d, J = 2.7 Hz, 1H), 3.45 – 3.26 (m, 4H), 1.73 – 1.55 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.4, 147.4, 128.3, 124.0, 105.8, 97.5, 48.2, 25.3, 24.3. The physical and spectroscopic data are in accordance with those reported in the literature.¹¹

4-(1-piperidinyl)benzonitrile (**13a**). 140 mg, 38%; white solid; mp 52-53 °C; $R_f = 0.32$ (SiO₂, *n*-heptane/EtOAc 9:1); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 9.1 Hz, 2H), 6.83 (d, J = 9.0 Hz, 2H), 3.41 – 3.25 (m, 4H), 1.77 – 1.55 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 153.6, 133.5, 120.4, 114.0, 98.9, 48.4, 25.2, 24.2. The physical and spectroscopic data are in accordance with those reported in the literature.¹²

4-(1-piperidinyl)-2-(trifluoromethyl)benzonitrile (**14a**). 504 mg, 99%; white solid; mp 68-69 °C; $R_f = 0.35$ (SiO₂, *n*-heptane/EtOAc 7:3); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.8 Hz, 1H), 7.09 (d, J = 2.6 Hz, 1H), 6.92 (dd, J = 8.8, 2.6 Hz, 1H), 3.47 – 3.33 (m, 4H), 1.77 – 1.62 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 152.8, 136.0, 134.0 (q, J = 31.7 Hz), 122.8 (q, J = 274.1 Hz), 117.1, 115.4, 111.2 (q, J = 4.6 Hz), 95.2, 48.2, 25.1, 24.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.41. The physical and spectroscopic data are in accordance with those reported in the literature.¹³

2-nitro-4-(1-piperidinyl)benzonitrile (**15a**). 413 mg, 89%; orange solid; mp 142-143 °C; $R_f = 0.33$ (SiO₂, *n*-heptane/EtOAc 6:4); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 2.7 Hz, 1H), 7.58 (d, J = 8.9 Hz, 1H), 7.02 (dd, J = 8.9, 2.7 Hz, 1H), 3.52 – 3.35 (m, 4H), 1.79 – 1.64 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 153.1, 150.3, 136.2, 116.9, 116.6, 109.2, 92.7, 48.2, 25.1, 23.9. The physical and spectroscopic data are in accordance with those reported in the literature.¹⁴

1-[4-(methylsulfonyl)-2-nitrophenyl]piperidine (**19a**). 548 mg, 96%; orange solid; mp 124-125 °C; $R_f = 0.45$ (SiO₂, *n*-heptane/EtOAc 1:1); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 2.3 Hz, 1H), 7.83 (dd, J = 8.9, 2.3 Hz, 1H), 7.14 (d, J = 9.0 Hz, 1H), 3.23 – 3.10 (m, 4H), 3.03 (s, 3H), 1.75 – 1.59 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 138.6, 131.7, 128.9, 127.3, 120.2, 51.8, 44.7, 25.4, 23.6. The physical and spectroscopic data are in accordance with those reported in the literature.¹⁵

2-(1-piperidinyl)pyrimidine (**20a**). 311 mg, 95%; colourless oil; $R_f = 0.35$ (SiO₂, *n*-heptane/EtOAc 9:1); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 4.7 Hz, 2H), 6.33 (t, J = 4.7 Hz, 1H), 3.75 – 3.66 (m, 4H), 1.65 – 1.45 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 157.9, 109.0, 44.7, 25.7, 24.8. The physical and spectroscopic data are in accordance with those reported in the literature.¹⁶

5-bromo-2-(1-piperidinyl)pyrimidine (**21a**). 478 mg, 99%; white solid; mp 55-56 °C; $R_f = 0.65$ (SiO₂, *n*-heptane/EtOAc 9:1); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 2H), 3.73 – 3.63

(m, 6H), 1.67 – 1.45 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 157.7, 104.8, 45.0, 25.6, 24.7. The physical and spectroscopic data are in accordance with those reported in the literature.¹⁷

5-(1-piperidinyl)-2-pyrimidinecarbonitrile (**22a**). 335 mg, 89%; white solid; mp 96-97 °C; R_f = 0.30 (SiO₂, *n*-heptane/EtOAc 7:3); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 3.45 – 3.31 (m, 2H), 1.75 – 1.58 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 141.5, 131.6, 116.8, 47.0, 24.9, 23.7; IR (ATR): 2939, 2850, 2229, 1558, 1523, 1465, 1451, 1442, 1371, 1291, 1239, 1211, 1128, 1023, 917, 890, 855, 800, 769, 654, 556 cm⁻¹; Anal. Calcd. for C₁₀H₁₂N₄: C, 63.81; H, 6.43; N, 29.77. Found: C, 63.90; H, 6.42; N, 29.71.

References

1) A.-H. Khuthier, A.-K. S. Al-Kazzaz, J. M. A. Al-Rawi and M. A. Al-Iraqi, Studies of tertiary amine oxides. 4. Thermal rearrangement of *N*-aryl amine oxides to *O*-arylhydroxylamines, *J. Org. Chem.*, 1981, **46**, 3634–3638.

2) S. Pradhan, A. Bhattacharyya and R. P. John, A coordination driven supramolecular Pd₂L₄ self-assembly as heterogeneous catalyst for Buchwald–Hartwig amination reaction, *Tetrahedron Lett.*, 2016, **57**, 1532–1536.

3) A. R. Katritzky and K. S. Laurenzo, Alkylaminonitrobenzenes by vicarious nucleophilic amination with 4-(alkylamino)-1,2,4-triazoles, *J. Org. Chem.*, 1988, **53**, 3978–3982.

4) A. C. Knipe and N. Sridhar, Synthesis of *N*-alkyl-2-(4-nitrophenoxy)-ethanamines. Intermediates in desulfonative double Smiles' rearrangement of *N*-alkyl-*N*-(2-hydroxyethyl)-4-nitrobenzenesulfonamides, *Synthesis*, 1976, **1976**, 606–607.

5) Y.-J. Cherng, Efficient nucleophilic substitution reactions of pyrimidyl and pyrazyl halides with nucleophiles under focused microwave irradiation, *Tetrahedron*, 2002, **58**, 887–890.

6) M. G. Organ, M. Abdel-Hadi, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O'Brien, M. Sayah and C. Valente, Pd-Catalyzed Aryl Amination Mediated by Well Defined, N-Heterocyclic Carbene (NHC)–Pd Precatalysts, PEPPSI, *Chem. Eur. J.*, 2008, **14**, 2443–2452.

7) T. B. Nguyen, L. Ermolenko and A. Al-Mourabit, Formic acid as a sustainable and complementary reductant: an approach to fused benzimidazoles by molecular iodine-catalyzed reductive redox cyclization of *o*-nitro-*t*-anilines, *Green Chem.*, 2016, **18**, 2966–2970.

8) M. A. Yurovskaya, A. Z. Afanas'ev, V. A. Chertkov and Y. G. Bundel', Synthesis of indoles from pyridinium salts 5.* Secondary amines in the reaction of 3-nitropyridinium salts with acetone, *Chem. Heterocycl. Compd. (N. Y.)*, 1988, **24**, 1000–1008.

9) N. Borlinghaus, T. N. Ansari, L. H. von Garrel, D. Ogulu, S. Handa, V. Wittmann and W. M. Braje, Nucleophilic aromatic substitution reactions under aqueous, mild conditions using polymeric additive HPMC, *Green Chem.*, 2021, **23**, 3955–3962.

10) E. F. Elslager, J. Clarke, L. M. Werbel, D. F. Worth and J. Davoll, Folate antagonists. 3. 2,4-Diamino-6-(heterocyclic)quinazolines, a novel class of antimetabolites with potent antimalarial and antibacterial activity, *J. Med. Chem.*, 1972, **15**, 827–836.

11) W. Yan, X. Wang, Y. Dai, B. Zhao, X. Yang, J. Fan, Y. Gao, F. Meng, Y. Wang, C. Luo, J. Ai, M. Geng and W. Duan, Discovery of 3-(5'-Substituted)-Benzimidazole-5-(1-(3,5-dichloropyridin-4-yl)ethoxy)-1*H*-indazoles as Potent Fibroblast Growth Factor Receptor Inhibitors: Design, Synthesis, and Biological Evaluation, *J. Med. Chem.*, 2016, **59**, 6690–6708.

12) H. Deol, G. Singh, M. Kumar and V. Bhalla, Phenazine-based donor acceptor systems as organic photocatalysts for "metal-free" C–N/C–C cross-coupling, *J. Org. Chem.*, 2020, **85**, 11080–11093.

13) I. Kinoyama, N. Taniguchi, T. Yoden, H. Koutoku, T. Furutani, M. Kudoh and M. Okada, Synthesis and pharmacological evaluation of novel arylpiperazine derivatives as nonsteroidal androgen receptor antagonists, *Chem. Pharm. Bull.*, 2004, **52**, 1330–1333.

14) C. W. N. Holmes and J. D. Loudon, 283. The mobility of groups in certain benzonitriles, *J. Chem. Soc.*, 1940, 1521–1525.

15) J. F. Bunnett, T. Kato and N. S. Nudelman, Kinetics of reactions of 4-substituted 2nitrofluorobenzenes with piperidine in methanol, *J. Org. Chem.*, 1969, **34**, 785–788.

16) Y. B. Bhujabal, K. S. Vadagaonkar, A. Gholap, Y. S. Sanghvi, R. Dandela and A. R. Kapdi, HFIP promoted low-temperature S_NAr of chloroheteroarenes using thiols and amines, *J. Org. Chem.*, 2019, **84**, 15343–15354.

17) J. P. Geerts, H. C. van der Plas and A. van Veldhuizen, NMR studies on σ - adducts of heterocyclic systems with nucleophiles. VI—Carbon - 13 nuclear magnetic resonance investigations on σ - adduct formation of pyrimidine and some of its derivatives with potassium amide in liquid ammonia, *Org. Magn. Reson.*, 1975, **7**, 86–88.

Scale-up experiment

Procedure for the mechanochemical S_NAr on 10 mmol of 1-fluoro-2-nitrobenzene 6

1-Fluoro-2-nitrobenzene **6** (1.41 g, 10 mmol), piperidine **2a** (1.28 g, 15 mmol) and Al_2O_3 (15 g) were added to the zirconia reactor (50 mL) equipped with four zirconia milling balls (d=1 cm). The mixture was shaken at 15 Hz for 1 h. The powdery residue was recovered, mixed with a small amount of silica gel and put directly over a pad of silica gel. Vacuum-aided elution with *n*-eptane/EtOAc 8:2 and subsequent removal of the volatiles under reduced pressure afforded **6a** (1.87 g, 91%) in a pure form.

Figure S3. Image sequence of the scale-up experiment. a) aspect of the reactor at the end of the experiment; b) recovery of the crude from the jar; c) aspect of the crude; d) aspect of the crude after mixing with a small amount of silica gel; e) setup for purification via dry column chromatography; f) eluted fraction containing the product **6a**; g,h) aspect of the product **6a** after removal of the volatiles under reduced pressure; i) weighing; j) purity check via TLC analysis.

NMR and IR spectra

