Supporting Information For

Mechanical approach for creating different molecular adducts and regulating salt polymorphs: A case study of the antiinflammatory medication Ensifentrine

Ananya Kar,^a Lopamudra Giri, ^{*b} Gowtham Kenguva,^a Smruti Rekha Rout^a, and Rambabu Dandela^{*a}

^aDepartment of Industrial and Engineering Chemistry, Institute of Chemical Technology-

Indian Oil Bhubaneswar Campus, Bhubaneswar, India. E-mail:

r.dandela@iocb.ictmumbai.edu.in

^bDepartment of Chemistry, Odisha University of Technology and Research, (Formerly CET),

Bhubaneswar, India. E-mail: lopamudra7giri@gmail.com

Table S1. p*K*a^a values of ENSE and salt formers.

Figure S1. PXRD screening method to evaluate the probable production of binary adducts between ENSE and GRAS co-former.

Figure S2. Optical microscopic images of different solid forms of ENSE.

Figure S3. ORTEP view of (a) ENSE.MAL(α), (b) ENSE.MAL(β), (c) ENSE.PTH (d) ENSE.SAL and (e) ENSE.SAC. Herein, the ellipsoids are drawn with a 50% probability **Table S2.** Hydrogen bond distances (Å) and angles (o) of molecular adducts of ENSE.

Figure S4. A comparative PXRD overlay of all the solid forms of ENSE (a) ENSE.MAL (a), (b) ENSE.MAL (b), (c) ENSE.PTH, (d) ENSE.SAL and (e) ENSE.SAC with its simulated pattern.

Figure S5. TGA profiles of various molecular adducts of ENSE.

Details of the solubility parameters of solid forms of ENSE

Figure S6. Overlay PXRD of ENSE solid forms before and after the solubility test, relative to their starting materials.

Figure S7. Illustration of molecular recognition between ENSE molecules.

Figure S8. ORTEP view of ENSE.Cl. Herein, the ellipsoids are drawn with a 50% probability.

 Table S3. Crystallographic Parameters of ENSE.Cl.

Figure S9. Following the solubility test, a comparative PXRD overlay of all the solid forms of ENSE showed the development of discrete, stable adducts that matched the simulated pattern of ENSE.Cl.

Compound name	pKa	p <i>K</i> a	ΔpKa between ENSE and co-	Obtained forms
	(acidic medium)	(basic medium)	Iormer	
Ensifentrine (ENSE)	14.74	5.23		
Malonic Acid (MAL)	4.43	5.41	9.33, 0.80	Salt
Saccharin (SAC)	1.60	1.8	12.94, 3.63	Salt
Succinic Acid	4.2	5.6	9.14, 1.03	Mixture
Glutaric Acid	4.34	5.22	9.52, 0.89	Mixture
Adipic Acid	4.41	5.41	9.33, 0.82	Mixture
Pimelic Acid	4.71	5.58	9.16, 0.52	Mixture
Suberic Acid	4.52	5.49	10.22, 0.71	Mixture
Azelaic Acid	4.55	5.49	9.25, 0.68	Mixture
Fumaric Acid	3.03	4.45	10.29, 2.2	Mixture
L-Malic Acid	3.4	5.2	9.54, 1.83	Mixture
(+)-Tartaric Acid	2.89	4.4	10.34, 2.34	Mixture
Isophthalic Acid	3.46	4.46	10.28, 1.77	Mixture
Terephthalic Acid	3.54	4.34	10.4, 1.69	Mixture
3-Hydroxybenzoic	3.84	6.1	8.64, 1.39	Mixture
acid(3-HBA)				
Phthalic Acid	2.89	5.51	9.23, 2.34	Salt
Salicylic Acid	2.79	6.3	8.44, 2.44	Salt
4-Hydroxybenzoic	4.58	9.49	5.25, 0.65	Mixture
acid(4-HBA)				
2,4-	3.1	5.8	8.94, 2.13	Mixture
Dihydroxybenzoic				
acid (2,4-DHBA)				
2,5-Dihdroxybenzoic	2.97	5.9	8.84, 2.26	Mixture
acid				

^apKa values were determined using Marvin 5.10.1, 2012, ChemAxon, http://www.chemaxon.com. These values are closely resembling with pKa values compiled by R. Williams.

S4

S5

S9

Figure S1. PXRD screening method to evaluate the probable production of binary adducts between ENSE and GRAS co-former.

Figure S2. Optical microscopic images of different solid forms of ENSE.

Figure S3. ORTEP view of (a) ENSE.MAL(α), (b) ENSE.MAL(β), (c) ENSE.PTH (d) ENSE.SAL and (e) ENSE.SAC. Herein, the ellipsoids are drawn with a 50% probability.

Table S2. Hydrogen bond distances	s (Å) and	angles (°)) of molecular	adducts of ENSE.
-----------------------------------	-----------	------------	----------------	------------------

Solid forms	D –Н···A	<i>D</i> -H(Å)	H···A(Å)	D -A(Å)	D -H···A(°)
ENSE.MAL(α)	O4-H4…O1 ⁻ (Intra)	0.820	1.69	2.451(1)	154
	N2-H100…O1-	0.890	2.01	2.902(1)	174
	N1-H1B…O2	0.860	2.06	2.901(2)	166
	N1-H1A····O2	0.860	2.21	2.982(1)	149
	N5 ⁺ -H103····O8(Intra)	1.040	1.65	2.673(1)	165
	С15-Н15…ОЗ	0.930	2.30	3.231(1)	172
	С9-Н101…О2	0.962	2.42	3.261(2)	148
ENSE.MAL(β)	O1-H6…O2-(Intra)	0.820	1.88	2.456(1)	126
	N4 ⁺ -H5···O8(Intra)	0.905	1.86	2.749(1)	164
	N2-H2A…O4	0.860	2.05	2.912(2)	176
	N2-H2B…O5	0.860	2.50	3.117(1)	129
	N1-H2···O2-	0.935	1.98	2.903(1)	166
	C7–H7A····O2 ⁻	0.970	2.57	3.377(1)	144
ENSE.PTH	N2-H2A···O3	0.860	2.26	3.111(1)	167
	N5 ⁺ -H80····O4(Intra)	0.950	1.84	2.785(2)	169
	N1-H1A…O8	0.860	2.18	3.020(1)	164

	N2-H2B···O7-	0.860	2.12	2.900(1)	150
	C17–H17A…O4	0.960	2.71	3.111(1)	143
	C1–H1A…O5	0.960	2.19	3.125(1)	164
	C31–H31…O4	0.930	2.54	3.324(1)	142
	C–H2E····O2	0.960	2.57	3.431(2)	149
ENSE.SAL	O1-H103····O2(Intra)	0.819	1.76	2.493(1)	148
	N2-H102···O2-	0.906	2.04	2.997(1)	176
	N1-H1B…O3	0.860	1.99	2.828(2)	164
	N5 ⁺ -H80····O7(Intra)	0.961	1.76	2.719(3)	170
	N1-H1A···O3	0.860	2.20	2.917(1)	139
	С19-Н19В…О4	0.970	2.47	3.263(1)	139
	С3-Н3…О7	0.930	2.90	3.783(2)	158
ENSE.SAC	N1-H71N5-	0.858	2.44	3.294(2)	169
	N4–H4A…O6	0.860	2.25	2.876(1)	129
	N4-H4B…O6	0.860	2.02	2.839(2)	157
	N6 ⁺ –H80····O7(Intra)	0.907	1.91	2.804(2)	167
	С15-Н15В…О2	0.970	2.40	3.252(3)	146
	С27-Н33…О7	0.930	2.62	3.532(1)	165

Figure S4. A comparative PXRD overlay of all the solid forms of ENSE (a) ENSE.MAL (a), (b) ENSE.MAL (b), (c) ENSE.PTH, (d) ENSE.SAL and (e) ENSE.SAC with its simulated pattern.

Figure S5. TGA profiles of various molecular adducts of ENSE.

Details of the solubility parameters of solid forms of ENSE

Calibration graph of ENSE at pH 1.2.

S.No.	Sample Name	Absor	bance		Estimated Standard	Average Absorbance	Average Concentration	Final solid
					Deviation		(mg/mL)	phase
1	ENSE	1.436	1.432	1.435	0.002	1.434	19.795	SALT
2	ENSE.MAL(α)	1.288	1.28	1.284	0.004	1.284	17.722	SALT
3	ENSE.MAL(β)	1.282	1.28	1.281	0.001	1.281	17.671	SALT
4	ENSE.PTH	0.124	0.127	0.125	0.002	0.126	1.7374	ENSE.PTH
5	ENSE.SAL	0.175	0.17	0.171	0.003	0.172	2.375	ENSE.SAL
6	ENSE.SAC	0.081	0.08	0.078	0.002	0.079	1.0861	ENSE.SAC

S.No.	Sample	Absor	bance		Estimated	Average	Average	Final solid
	Name				Standard	Absorbance	Concentration	phase
					Deviation		(mg/mL)	
1	ENSE	1.886	1.883	1.885	0.002	1.884	0.029	ENSE
2	ENSE.MAL(α)	0.402	0.404	0.399	0.003	0.402	6.329	ENSE.MAL(α)
3	ENSE.MAL(β)	0.381	0.382	0.386	0.003	0.383	6.029	ENSE.MAL(β)
4	ENSE.PTH	0.36	0.362	0.36	0.001	0.361	5.689	ENSE.PTH
5	ENSE.SAL	0.115	0.117	0.116	0.001	0.116	1.8281	ENSE.SAL
6	ENSE.SAC	0.492	0.49	0.491	0.001	0.491	7.7376	ENSE.SAC

342 G.F

24/28-

And State

22/14

Figure S6. Overlay PXRD of ENSE solid forms before and after the solubility test, relative to their starting materials.

Figure S7. Illustration of molecular recognition between ENSE molecules.

Figure S8. ORTEP view of ENSE.Cl. Herein, the ellipsoids are drawn with a 50% probability.

 Table S3. Crystallographic Parameters of ENSE.Cl.

Parameters	ENSE.CI
Formula	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$M_{ m r}$	1120.04
crystal shape	Needle
crystal colour	Colorless
crystal system	Triclinic
space group	$P\overline{1}$
<i>Т</i> , К	273(2)
λ (Mo-K _{α})/Å	0.71073

	a/Å				12.371(8)	_
	b/Å	Å			13.385(7)	
	c/Å	-			<u>-17.690(2)</u>	Т
	$\alpha/0$				93.64(1)	
('n	β⁄0	- MA MAW	Mune	NSE.MA	L(<u>()5.</u> 0H(1.)2	
ity(a.	$\gamma^{/0}$				91.16(1)	
tensi	L K/	Sellim	Autom	ENSE.M	Ab(80)10H 1.2	
ve In	Z	1			2	
elati	UJJ.	g cm ³	Uthen	EN	SE_pH 1.2 1.319	
œ	μ , 1	mm ⁻¹	helmblemen	•	0.186 ENSE.CI	
		range [°]			2.24-27.60	
	5 10 m	1111119511101205	25 30	35	40 16 ≤45 ≤ 15	90
			20		$-17 \le k \le 17$	7
Figu	re				$-23 \le l \le 23$,
	F(0))00)			1180	
	tota	al reflections			54109	
	uni	que reflection	IS		13090	
	ref	lection at $I > 2$	2σ (Ι)		5756	
	No	. of parameter	·S		728	
	R_1 ,	<i>I</i> > 2σ (<i>I</i>)			0.0751	
	wR	$I_2 I > 2\sigma(I)$			0.2536	
	Go	F on F^2			1.110	
	CC	DC No.			2349985	

Following the solubility test, a comparative PXRD overlay of all the solid forms of ENSE showed the development of discrete, stable adducts that matched the simulated pattern of ENSE.Cl.