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Differential Scanning Calorimetry

Differential Scanning Calorimetry data were collected on pure components and on the
experimental sets (training, validation) of binary mixtures. Thermograms were recorded and
elaborated using Pyris Software V12 (PerkinElmer). Endothermic and exothermic peaks were
integrated and the resulting enthalpy values reported in J/g. A summary of thermal events is
outlined in Table S1, for pure components, and Table S2, for binary mixtures. Binary mixtures of
APY-THY, BP-THY, and IMZ-THY gave a liquid phase at 293 K therefore they were not analysed
by DSC.
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Figure S1. Thermogram of 4-aminopyridine (APY). First heating run from 20 °C to 180 °C (red curve), cooling run from
180 °C to -20 °C (blue curve) and second heating run from -20 °C to 180 °C (green curve). The whole firing profile was
performed at 5°C/min. The first endothermic peak at 96.23 °C accounts for an enantiotropic transition towards a new
polymorphic phase, that melted at 158.37 °C. In the cooling run, the exothermic peak refers to the recrystallization of the
new polymorphic phase that afterwards melted in the second heating run.
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Figure S2. Thermogram of benzoic acid (BA). First heating run from 20 °C to 145 °C (red curve), cooling run from 145
°C to -20 °C (blue curve) and second heating run from -20 °C to 145 °C (green curve). The whole firing profile was
performed at 5°C/min. The endothermic peaks shown in the heating runs refer to the melting of BA, while the exothermic
peak in the cooling run refers to its recrystallization.
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Figure S3. Thermogram of benzophenone (BP). First heating run from 20 °C to 70 °C (red curve), cooling run from 70 °C
to -20 °C (blue curve) and second heating run from -20 °C to 70 °C (green curve). The whole firing profile was performed
at 5°C/min. The endothermic peaks shown in the heating runs refer to the melting of BP, while the exothermic peak in the
cooling run refers to its recrystallization.
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Figure S4. Thermogram of 2,2-bipyridine (BPY). First heating run from 20 °C to 90 °C (red curve), cooling run from 90
°C to -20 °C (blue curve) and second heating run from -20 °C to 90 °C (green curve). The whole firing profile was
performed at 5°C/min. The endothermic peaks shown in the heating runs refer to the melting of BPY, while the
exothermic peak in the cooling run refers to its recrystallization.
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Figure S5. Thermogram of camphor (CAM). First heating run from 20 °C to 200 °C (red curve), cooling run from 200 °C
to -20 °C (blue curve) and second heating run from -20 °C to 200 °C (green curve). The whole firing profile was
performed at 5°C/min. The first endothermic peaks shown in the heating runs refer to an enantiotropic transition towards
a polymorphic phase, that afterwards melts as confirmed by the endothermic peaks at 175.99 °C (1t heating) and 175.93
°C (2" heating). The exothermic peak in the cooling run refers to the crystallization of the former phase.
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Figure S6. Thermogram of diphenylamine (DPA). First heating run from 20 °C to 80 °C (red curve), cooling run from 80
°C to -20 °C (blue curve) and second heating run from -20 °C to 80 °C (green curve). The whole firing profile was
performed at 5°C/min. The endothermic peaks shown in the heating runs refer to the melting of DPA, while the
exothermic peak in the cooling run refers to its recrystallization.
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Figure S7. Thermogram of 2,3-dimethylquinoxaline (DQUI). First heating run from 20 °C to 130 °C (red curve), cooling
run from 130 °C to -20 °C (blue curve) and second heating run from -20 °C to 130 °C (green curve). The whole firing
profile was performed at 5°C/min. The endothermic peaks shown in the heating runs refer to the melting of DQUI, while
the exothermic peak in the cooling run refers to its recrystallization.



69.81 -

—— 1°heating
HBA —— 1°cooling
60 .
—— 2°heating
50
40 4
30
= 20
s 4
£
S
=)
o 10
]
2
i
3
Yoo
§
g
T
101
20
-30
-40
-50
-85.27 T T T T T T \
25 0 20 40 80 80 100 120 140 160 180 200 220 235

Temperature (°C)

Figure S8. Thermogram of 4-hydroxybenzoic acid (HBA). First heating run from 20 °C to 230 °C (red curve), cooling run
from 230 °C to -20 °C (blue curve) and second heating run from -20 °C to 230 °C (green curve). The whole firing profile
was performed at 5°C/min. The endothermic peak shown in the first heating run refers to the melting of HBA, while the
exothermic peak in the cooling run refers to the crystallization of a polymorphic phase, that melted in the second heating
run.
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Figure S9. Thermogram of 6-hydroxyquinoline (HQUI). First heating run from 20 °C to 210 °C (red curve), cooling run
from 210 °C to -20 °C (blue curve) and second heating run from -20 °C to 210 °C (green curve). The whole firing profile
was performed at 5°C/min. The endothermic peaks shown in the heating runs refer to the melting of HQUI, while the
exothermic peak in the cooling run refers to its recrystallization.
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Figure $10. Thermogram of imidazole (IMZ). First heating run from 20 °C to 110 °C (red curve), cooling run from 110 °C
to -20 °C (blue curve) and second heating run from -20 °C to 110 °C (green curve). The whole firing profile was
performed at 5°C/min. The endothermic peaks shown in the heating runs refer to the melting of IMZ, while the
exothermic peak in the cooling run refers to its recrystallization.
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Figure S11. Thermogram of lauric acid (LAU). First heating run from 20 °C to 70 °C (red curve), cooling run from 70 °C
to -20 °C (blue curve) and second heating run from -20 °C to 70 °C (green curve). The whole firing profile was performed
at 5°C/min. The endothermic peaks shown in the heating runs refer to the melting of LAU, while the exothermic peak in
the cooling run refers to its recrystallization.
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Figure S12. Thermogram of menthol (MEN). First heating run from 20 °C to 70 °C (red curve), cooling run from 70 °C to
-20 °C (blue curve) and second heating run from -20 °C to 70 °C (green curve). The whole firing profile was performed at
5°C/min. The endothermic peak shown in the heating run refer to the melting of MEN, while the exothermic peak in the
cooling run refers to the crystallization of a new polymorphic case. This is supported by the presence of a first
endothermic peak in the second heating run at lower temperature (36.12 °C) due to the melting of the novel phase, in
concomitance of the crystallization of the former phase at 33.16 °C, that afterwards melts at 41.87 °C.
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Figure S13. Thermogram of phenazine (PHE). First heating run from 20 °C to 200 °C (red curve), cooling run from 200
°C to -20 °C (blue curve) and second heating run from -20 °C to 200 °C (green curve). The whole firing profile was
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performed at 5°C/min. The endothermic peaks shown in the heating runs refer to the melting of PHE, while the
exothermic peak in the cooling run refers to its recrystallization.
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Figure S14. Thermogram of thymol (THY). First heating run from 20 °C to 70 °C (red curve), cooling run from 70 °C to -
20 °C (blue curve) and second heating run from -20 °C to 70 °C (green curve). The whole firing profile was performed at
5°C/min. The endothermic peaks shown in the heating runs refer to the melting of THY, while the exothermic peak in the
cooling run refers to its recrystallization.



Table S1. Summary of the thermal events that occurred during DSC measurements of pure components.

Component Run Thermal event Temperature (°C) AH (J g)
First heating 18t peak Endotherm!c 96.23 0.97
2nd peak Endothermic 158.37 209.89
APY First cooling 1st peak Exothermic 150.65 -208.73
Second heating 1st peak Endothermic 158.72 208.66
First heating 18t peak Endothermic 123.05 141.39
BA First cooling 1st peak Exothermic 96.14 -130.85
Second heating 1st peak Endothermic 123.11 139.40
First heating 1st peak Endothermic 47.89 111.12
BP** First cooling 1st peak Exothermic 1.87 -93.74
Second heating 1st peak Endothermic 47.81 110.38
First heating 18t peak Endothermic 69.28 132.67
BPY* First cooling 1st peak Exothermic 25.10 -113.04
Second heating 15t peak Endothermic 69.24 129.99
First heating 18t peak Endotherm?c 86.64 1.26
2n peak Endothermic 175.99 42.10
CAM* First cooling 1st peak Exothermic 173.61 -39.65
Second heating 15(: peak Endotherm?c 90.14 1.30
2" peak Endothermic 175.93 40.31
First heating 18t peak Endothermic 55.33 121.60
DPA* First cooling 1st peak Exothermic 30.42 -110.74
Second heating 18t peak Endothermic 55.45 121.08
First heating 18t peak Endothermic 106.11 134.80
DQUI First cooling 1st peak Exothermic 95.02 -140.02
Second heating 18t peak Endothermic 105.87 141.33
First heating 18t peak Endothermic 215.05 256.18
HBA First cooling 18t peak Exothermic 167.03 -192.88
Second heating 21:; peak Endotherm?c 206.92 211.06
peak Endothermic 218.49 7.34
First heating 18t peak Endothermic 194.89 170.72
HQUI First cooling 1st peak Exothermic 160.20 -154.85
Second heating 1st peak Endothermic 194.76 167.42
First heating 1st peak Endothermic 90.09 185.17
IMZ First cooling 1st peak Exothermic 66.23 -180.95
Second heating 1st peak Endothermic 89.96 187.29
First heating 1st peak Endothermic 43.96 185.57
LAU* First cooling 1st peak Exothermic 38.61 -183.79
Second heating 1st peak Endothermic 43.90 183.90
First heating 15t peak Endothermic 42.68 91.85
First cooling 18t peak Exothermic 26.89 -67.51
MEN* 1st peak Endothermic 31.57 2.42
Second heating 2 peak Exothermi_c 33.16 -2.68
3 peak Endothermic 36.12 17.09
4t peak Endothermic 41.87 49.97
First heating 18t peak Endothermic 173.98 134.54
PHE First cooling 1st peak Exothermic 159.57 -133.29
Second heating 18t peak Endothermic 174.28 135.61

*Component used only for POEM'’s validation

**Component used both for training set and PoEM’s validation



Table S1 Continued. Summary of the thermal events that occurred during DSC measurements of pure components.

Component Run Thermal event Temperature (°C) AH (J g)

First heating 1st peak Endotherm?c 27.37 9.26

2n peak Endothermic 52.14 151.19

. . 1st peak Exothermic 42.62 -150.83

PYR* First cooling 2nd IL:)eak Exothermic 20.04 -10.05
Second heating 1st peak Endotherm?c 20.38 10.87

2nd peak Endothermic 52.01 151.37

First heating 1st peak Endothermic 50.33 119.57

THY** First cooling 15 peak Exothermic -5.20 -86.15
Second heating 15 peak Endothermic 50.33 117.32

*Component used only for POEM’s validation set
**Component used both for training set and PoOEM’s validation set
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Figure S15. Thermogram of mixture APY-BA (xM(APY) = 0.3). Single heating run from 20 °C to 100 °C. The whole firing
profile was performed at 5°C/min. The first endothermic peak (44.64 °C) refers to the melting of the eutectic mixture
between APY and BA. A second endothermic peak was found at 55.07 °C, probably due to the melting of another
eutectic mixture between a new unknown phase, formed in minor quantity during the mechanochemical mixing of
components, and APY. The thermal behavior above 70°C is the result of multiple endothermic and exothermic events of
difficult interpretation.
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Figure S16. Thermogram of mixture APY-BP (xM(APY) = 0.2). Single heating run from 20 °C to 70 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between APY and
BP.
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Figure S17. Thermogram of mixture APY-DQUI (xm(APY) = 0.3). Single heating run from 20 °C to 160 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak at 104.83 °C, refers to the melting of the eutectic mixture
between APY and DQUI, followed by the melting of residual APY at 130.69 °C.
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Figure $18. Thermogram of mixture APY-HBA (xm(APY) = 0.7). Single heating run from 20 °C to 220 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak at 124.55 °C refers to the melting of the eutectic mixture
between APY and HBA, followed by the melting of residual HBA at 169.07 °C. The first endothermic peaks at 64.65 °C
and 84.98 °C are of difficult interpretation.
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Figure $19. Thermogram of mixture APY-HQUI (xm(APY) = 0.7). Single heating run from 20 °C to 150 °C. The whole

firing profile was performed at 5°C/min. The endothermic peak at 105.52 °C refers to the melting of the eutectic mixture
between APY and HQUI, followed by the melting of residual APY at 120.38 °C.

13



326 4

* APY-IMZ e “75hiting

30

28 4

Heat Flow Endo Up (mW)
0
3

®

20 4

T r
15 20 40 80 80 100 120 140 152
Temperature (“C)

Figure S20. Thermogram of mixture APY-IMZ (xM(APY) = 0.3). Single heating run from 20 °C to 150 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between APY
and IMZ.
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Figure S21. Thermogram of mixture APY-PHE (xm(APY) = 0.6). Single heating run from 20 °C to 180 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between APY
and PHE.
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Figure $22. Thermogram of mixture BA-BP (XM(BA) = 0.3). Single heating run from 20 °C to 70 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between BA and
BP.
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Figure S23. Thermogram of mixture BA-DQUI (xm(BA) = 0.4). Single heating run from 20 °C to 100 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak at 46.85°C refers to the melting of the eutectic mixture between
BA and DQUI, followed by the melting of residual DQUI at 83.56 °C.
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Figure S24. Thermogram of mixture BA-HBA (xm(BA) = 0.8). Single heating run from 20 °C to 140 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between BA and
HBA.
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Figure S25. Thermogram of mixture BA-HQUI (xm(BA) = 0.8). Single heating run from 20 °C to 140 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak at 83.49°C refers to the melting of the eutectic mixture between
BA and HQUI, followed by the melting of residual BA at 112.20 °C.
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Figure $26. Thermogram of mixture BA-IMZ (xm(BA) = 0.3). Single heating run from 20 °C to 80 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak at 53.12 °C refers to the melting of the eutectic mixture
between BA and IMZ, followed by an exothermic peak at 63.30 °C likely due to the crystallization of a new unknown
phase.
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Figure S27. Thermogram of mixture BA-PHE (xm(BA) = 0.7). Single heating run from 20 °C to 110 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between BA and
PHE.
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Figure S28. Thermogram of mixture BA-THY (xm(BA) = 0.3). Single heating run from 20 °C to 70 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between BA and
THY.
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Figure S29. Thermogram of mixture BP-DQUI (xm(BP) = 0.7). Single heating run from 20 °C to 70 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between BP and
DQUI.
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Figure S30. Thermogram of mixture BP-HBA (xM(BP) = 0.8). Single heating run from 20 °C to 70 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between BP and
HBA.
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Figure S31. Thermogram of mixture BP-HQUI (xm(BP) = 0.8). Single heating run from 20 °C to 70 °C. The whole firing

profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between BP and
HQUI.
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Figure S32. Thermogram of mixture BP-IMZ (xM(BP) = 0.6). Single heating run from 20 °C to 70 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between BP and
IMZ.
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Figure S33. Thermogram of mixture BP-PHE (xm(BP) = 0.8). Single heating run from 20 °C to 70 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between BP and
PHE.
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Figure S34. Thermogram of mixture DQUI-HBA (xm(DQUI) = 0.8). Single heating run from 20 °C to 130 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between DQUI
and HBA.
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Figure S35. Thermogram of mixture DQUI-HQUI (xm(DQUI) = 0.8). Single heating run from 20 °C to 125 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak at 102.46 °C refers to the melting of the eutectic mixture
between DQUI and HQUI, followed by the melting of residual HQUI at 116.35 °C.
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Figure $36. Thermogram of mixture DQUI-IMZ (xm(DQUI) = 0.3). Single heating run from 20 °C to 100 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak at 73.38 °C refers to the melting of the eutectic mixture
between DQUI and IMZ, followed by the melting of residual HQUI at 87.46 °C.
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Figure S37. Thermogram of mixture DQUI-PHE (xm(DQUI) = 0.8). Single heating run from 20 °C to 140 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between DQUI
and PHE.
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Figure S38. Thermogram of mixture DQUI-THY (xm(DQUI) = 0.3). Single heating run from 20 °C to 110 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak at 34.41 °C refers to the melting of the eutectic mixture
between DQUI and THY. The following thermal event are of difficult interpretation but included the melting of residual
THY.
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Figure S39. Thermogram of mixture HBA-HQUI (xm(HBA) = 0.4). Single heating run from 20 °C to 150 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between HBA
and HQUI.
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Figure S40. Thermogram of mixture HBA-IMZ (xm(HBA) = 0.2). Single heating run from 20 °C to 200 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak at 75.85 °C refers to the melting of the eutectic mixture
between HBA and IMZ. The following thermal events are of difficult interpretation but included the melting of residual
HBA.

24



33.78 4

HBA-PHE —— 1°heating

329

30

n n
-3 @

Heat Flow Endo Up (mW)

o
=

224

20+ L

18.33 T T T T T !
15 20 40 60 80 100 120 140 180 180 200 215
Temperature (“C)

Figure S41. Thermogram of mixture HBA-PHE (XM(HBA) = 0.3). Single heating run from 20 °C to 210 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak at 163.40 °C refers to the melting of the eutectic mixture
between HBA and PHE, followed by the melting of residual HBA at 183.82 °C.
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Figure S42. Thermogram of mixture HBA-THY (xm(HBA) = 0.2). Single heating run from 20 °C to 100 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between HBA
and THY.
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Figure S43. Thermogram of mixture HQUI-IMZ (xm(HQUI) = 0.2). Single heating run from 20 °C to 90 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between HQUI
and IMZ.
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Figure S44. Thermogram of mixture HQUI-PHE (xm(HQUI) = 0.4). Single heating run from 20 °C to 170 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between HQUI
and PHE.
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Figure S45. Thermogram of mixture HQUI-THY (xm(HQUI) = 0.2). Single heating run from 20 °C to 70 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between HQUI
and THY.
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Figure S46. Thermogram of mixture IMZ-PHE (xm(IMZ) = 0.8). Single heating run from 20 °C to 130 °C. The whole firing
profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between IMZ and
PHE, which occurred in concomitance of an exothermic event of difficult interpretation.
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Figure S47. Thermogram of mixture PHE-THY (xm(PHE) = 0.2). Single heating run from 20 °C to 160 °C. The whole
firing profile was performed at 5°C/min. The endothermic peak refers to the melting of the eutectic mixture between PHE
and THY.
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Table S2. Summary of the thermal events that occurred during DSC measurements of binary mixtures.

Binary mixture Run Thermal event Temperature (°C) AH (J g)
18t peak Endothermic 44.64 3.64

APY-BA . ' 2 peak Endothermic 55.07 1.19

(Fn(APY) = 0.3) First heating Endothermic 75.86 34.85
e multiple peaks Exothermic 85.76 -6.76
Endothermic 93.88 9.34

APY-BP First heating 1st peak Endothermic 46.45 91.51
(“m(APY) = 0.2)

APY-DQUI First heatin 1st peak Endothermic 104.83 109.73
*m(APY) = 0.2) 9 2nd peak Endothermic 130.69 48.83

1st peak Endothermic 64.65 0.85

APY-HBA First heatin 2nd peak Endothermic 84.98 1.10

(*m(APY) = 0.7) 9 31 peak Endothermic 124.55 106.03
4t peak Endothermic 169.07 194.72

APY-HQUI First heatin 1st peak Endothermic 105.52 126.15
(*m(APY) = 0.7) 9 2n peak Endothermic 120.38 44.16
(xm"(‘:;;)”f'zo 3 First heating 1st peak Endothermic 70.01 150.56

APY-PHE . . 1st peak Endothermic 100.55 0.58

First heating
(*m(APY) = 0.6) 2nd peak Endothermic 144.77 190.16
(xmﬁ;xB_F; 3 First heating 1st peak Endothermic 41.90 99.01
BA-DQUI First heati 18t peak Endothermic 46.85 56.04
(*m(BA) = 0.4) rstheating 2nd peak Endothermic 83.56 65.54

BA-HBA .

First heating 1st peak Endothermic 114.20 141.60

(*m(BA) = 0.8)
BA-HQUI First heati 1st peak Endothermic 83.49 45.27
(m(BA) = 0.8) Irst heafing 2 peak Endothermic 112.20 74.02
BA-IMZ First heat 1st peak Endothermic 53.12 74.40
m(BA) = 0.3 Irst heating 21 peak Exothermic 63.30 -8.03

("m(BA) )
(xmB(g:;l_-"jD First heating 1st peak Endothermic 87.94 80.32
(x:}g/;;njzw First heating 15 peak Endothermic 42.35 122.27
(XB“’; "g‘_";’n First heating 1%t peak Endothermic 37.43 105.98
- n’f{; ":’;"_3'3 ) First heating 1%t peak Endothermic 46.19 89.75
(xfg:)lc—’gls) First heating 1st peak Endothermic 47.52 89.67
(xm?;;)mfzo 6) First heating 1st peak Endothermic 44.36 78.08
(xgg;fljgg) First heating 15t peak Endothermic 44.97 88.59
(ngg{;/l)-’??g) First heating 1st peak Endothermic 114.18 118.91

DQUI-HQUI First heati 1st peak Endothermic 102.46 113.35
*n(DQUI) = 0.8, rstheating 27 peak Endothermic 116.35 30.84
("m( ) )

DQUI-IMZ First heati 1st peak Endothermic 73.38 112.89
Fm(DQUI) = 0.3) Irstheating 2nd peak Endothermic 87.46 29.02
(xrf:gg{;;l_{ga) First heating 1st peak Endothermic 95.38 112.70

DQULTHY 15t peak Endothermic 34.41 41.04
x g U.I - 0.3 First heating 2M peak Endothermic 48.54 14.34
(m(bQUI) =0.3) 31 peak Endothermic 69.04 24.61
(x:(?_gq’;’?g;) First heating 1% peak Endothermic 120.52 63.60

HBA-IMZ First heati 1st peak Endothermic 75.85 85.14
(“m(HBA) = 0.2) rst heating 21 peak Exothermic 163.71 -1.19
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31 peak Endothermic 173.24 3.82

HBA-PHE st hoatin 15 peak Endothermic 163.40 57.42
(m(HBA) = 0.3) Irst heating 2nd peak Endothermic 183.82 69.48

Table S2 Continued. Summary of the thermal events that occurred during DSC measurements of binary mixtures.

Binary mixture Run Thermal event Temperature (°C) AH (J g)
XHBA-THY First heating 1st peak Endothermic 49.98 121.66
("m(HBA) =0.2)

x HQUI-mz First heating 1st peak Endothermic 69.04 133.71

("m(HQUI) = 0.2)

HQUI-PHE . . .
1t peak Endothermic 148.58 141.91
(Fn(HQUI) = 0.4) First heating p i
HQUI-THY . . .
1st peak Endothermic 45.25 118.36
(Fm(HQUI) = 0.2) First heating p i
IMZ-PHE First heatin 1st peak Exothermic 76.72 -4.88
Fm(IMZ) = 0.8) eating 2nd peak Endothermic 85.91 126.21
PHE-THY First heating 15t peak Endothermic 43.17 114.24

(*m(PHE) = 0.2)
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Interaction parameter (X) calculations

The general Schroder-Laar equation (Eq. S1) defines the solid-liquid equilibrium curve of a
component within a binary mixture, also accounting for non-ideality by including parameter X from
Regular Solutions’ theory:

AH; 1 1
In (x)+ x (1-x)? = l(__ ) Eq. ST
R Ti Tcalc

Given a generic binary mixture 1-2, the equilibrium curves of two components must assume the
same value at the eutectic point (Eq. S2), where Teate = Teur, By imposing that the equilibrium
curves intersect at Teut, a single equation is returned (Eq. S3) wherein the only unknown

quantities are the molar ratio at the eutectic composition *eut and the interaction parameter .

calc

! =i—i[lnx +)((1—x)2]=l—i[ln(l—x)+)((x)2]
Tee Tq AHy ! ! T, AH, ! ! Eq. S2
I 2 2
[ N Xoye t X (1- xeut) ] [lTl 1- xeut) +Xx (xeut) ] 1 1 _
AH, AH, RT, RT, Eq. S3

The minimization of Eq S3 returns the two unknown quantities (*eut, X) and it is implemented into
our predictive software POEM (i.e. Predictor of Eutectic Mixtures) as SciPy optimize function?, used
for both calculating the eutectic point of a non-ideal binary mixture or the tables of potential
molecular partners suitable for a defined molecule of interest. Once determined *eut and x, the
melting temperature of eutectic mixtures were calculated according to Eq. S1.

The calculation of the interaction parameter ¥ for the training set of binary mixtures was
performed using the experimental melting temperature of eutectic mixtures (Teut)
determined through DSC measurements. After substituting Tew into the solid-liquid
equilibrium curves of two components (Eq. S2), the resulting expressions were imposed to return
the same values by varying *ext and x. The melting temperatures and enthalpies of pure
components used in the calculations were experimentally determined through DSC analysis (see
Table S1). Table S3 resumes the experimental (Tl, AHl, T2, AHZ, Teut) and calculated (Xeut, X)
parameters for the training set of binary mixtures.

X

Table S3. Summary of parameters used for calculating the eutectic composition “* eut and the interaction parameter X for

the training set of binary mixtures.

Binarymixture 12 Tv)  Miggymory  Towy  AMoumory  Xew  Tew (k) 24
APY-BA

i) 0.9 431.52 19.75 396.20 17.27 044 31779  -3.68
_APY-BP 43152 19.75 321.04 20.25 003 31960 151
(m(APY) = 0.2)
APY-DQUI 431,52 19.75 379.26 21.33 002 37798 3.8
(m(APY) = 0.2)
APY-HBA 431.52 19.75 488.20 35.38 071  397.70  -1.49
Fm(APY) = 0.7)

APY-HQUI
a2 07 431.52 19.75 468.04 24.78 060 37867  -1.63
APY-INZ 43152 19.75 363.24 12.79 022 34316  0.14
(m(APY) = 0.3)

APY-PHE

x 431.52 19.75 44713 24.24 0.76 417.92 1.67
(*m(APY) = 0.6)
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APY-THY*

A 431,52 19.75 323.48 17.96 032 29315  -3.11
(xm?;\ﬁlz ) 396.20 17.27 321.04 20.25 015 31505 076
X

Table S3 Continued. Summary of parameters used for calculating the eutectic composition “"eut and the interaction

parameter X for the training set of binary mixtures.

Binary mixture 1-2 Ty (K) AH, (kJ mol') T, (K) AH, (kJ mol") Xeut Teut (K) X
(52’/\‘)"_"5’4) 396.20 17.27 379.26 2133 0.50 32000  -2.24
(xf(';‘;")"f"gg) 396.20 17.27 488.20 35.38 0.88  387.35  -0.11
(xfg;"')"_’g’g) 396.20 17.27 468.04 24.78 068 35664  -1.87
(xm‘?é‘: )”f’zo ) 396.20 17.27 363.24 1279 036 32627  -0.24
(xz';‘;\‘; ’_'";- , 396.20 17.27 44713 24.24 0.67 36109  -1.00
- n‘?(g;\)”_" 2)/3) 396.20 17.27 323.48 17.96 017 31550 062
(xf(z ',f)"f‘;’n 321.04 20.25 379.26 21.33 077 31058  -0.01
(xf(’; ;’)'"_3'3 ) 321.04 20.25 488.20 35.38 096 31934  -145
(xfg ':)'2‘;’8) 321.04 20.25 468.04 24.78 099 32067  1.83
(xm’?:;)’"fi ) 321.04 20.25 363.24 12.79 090 31751 210
(xrﬁg;;’;’:’ja) 321.04 20.25 44713 24.24 093 31812 005
(xf('; le: ‘g Y 321.04 2025 323.48 17.96 049 20315  -0.07
DQUI-HBA

. . . . 098 38733 084

im0y 37926 2133 488.20 35.38
(xggg’& ’I;’C_’g’g) 379.26 2133 468.04 2478 093 37561  1.27
(xm[(’g(;‘g;)”'fi g 37926 2133 363.24 12.79 025 34653  1.33
. zgg:; I‘)D e , 37926 2133 447.13 24.24 081 36853 040
. Zgg:/-/ )T’_* 2;3) 379.26 21.33 323.48 17.96 027 30756  -0.49
("::1342;\7?‘;’4 : 488.20 35.38 468.04 24.78 038 39367  -3.69
(xm"(’"j;‘A' )”'_"i ) 488.20 35.38 363.24 12.79 013 34900  -1.90
(ngg;\:’f"; ) 488.20 35.38 447.13 24.24 017 43655  1.06
. ";5;)"_"2;2) 488.20 35.38 323.48 17.96 001 32313 047
. ’;’ngl)’"f'i , 46804 2478 363.24 12.79 019 34219  -1.09
. ﬂﬁgf/ /f e , 46804 24.78 447.13 24.24 039 42173 065
- ZSCL)J(IJI )T’_" 2)(2) 468.04 24.78 323.48 17.96 0.09 31840  -0.78
- m\jz’): ’;";_ ) 363.24 12.79 44713 24.24 005 35906 152
(xTIn’Z;Z-’)-,i T) p 363.24 12.79 323.48 17.96 036 29315  -0.57
PHE-THY 447.13 24.24 323.48 17.96 013 31632  -0.85

(“m(PHE) = 0.2)
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“Binary mixtures which melt at laboratory conditions (293.15 K, 1 atm).
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Interaction energy (AAG) calculations

Interaction energies were calculated starting from the molecular electrostatic potential (MEP)
surface for all components of binary mixtures. Calculations of MEP surfaces were performed by
Crystal Explorer17 on crystal structures reported in Table S4, which are available at CSD.

Table S4. Crystal structures of components used for MEP surface calculations with corresponding CSD Refcodes.

Component CSD Refcode
APY AMPYREO1
BA BENZACO1
BP BPHENO17
DQui KEYNOR
HBA JOZZIH01
HQUI QOVRUP
Mz IMAZOL04
PHE PHENAZ04
THY IPMEPL

MEP surfaces were generated at 6-31G(d) level of theory using either 0.0300 or 0.0104 e bohr3
isodensity surfaces. These isodensity values have been recently optimised by Storer et al.® to
account for secondary ionic interactions, the former (0.0300 e bohr3) used for estimating the

maxima of MEP surfaces (Emax) while the latter (0.0104 e bohr3) for estimating the minima (E,).

After generating MEP surfaces, a pair of Emax and Emin values was extracted for each component

and used for determining @ and B parameters, according to Eq. S4-S5:
a=mE + c, Eq. S4

a - max

B=mgE, ., + cg Eq. S5

Mq Mg Ca Cp values were experimentally determined by Storer et al.34 and depend on the

functional groups associated with Emax and Emin values. A table of all parameters used for @ and
B calculations is here reported (Table S5).

Table S5. .List of parameters used for computing & and B values for all components of binary mixtures.

Component  Emax ymot)  Emin (ks mot) My Cq mg Cp a B

APY 421.39 -294.84 0.0132, 28  -0.0336,-1.08  2.76 8.83
BA 549.52 -194.55 0.0132, 2.8  -0.0336,-042 445 6.12
BP 219.75 -194.02 0.0072,-017  -0.0336,-042  1.41 6.10
DQUI 211.62 -225.79 0.0072,-0.17  -0.0336,-1.08  1.35 6.51
HBA 534.29 -220.02 0.0132,-28  -0.0336,-042 425 6.97
HQUI 515.91 -257.04 0.0132, 2.8  -0.0336,-1.08  4.01 7.56
Mz 471.28 -293.79 0.0132, 2.8  -0.0336,-1.08  3.42 8.79
PHE 234.46 -216.60 0.0072,-0.17  -0.0336,-1.08  1.52 6.20
THY 478.37 -138.89 0.0132,-28  -0.0336,-066  3.51 4.01
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Considering intermolecular interactions as the product of the most polar functional groups
belonging to different molecules (-@B)®, interaction energies (AAG) were obtained subtracting
homomeric from heteromeric contributions, as defined by Eq. S6:

AAG/k ] mol™ = (a1f; + azfy) — (a1, + azfy)

A J AN J
Y Y
homomeric heteromeric
contribution contribution

Eq. S6

Calculated interaction energies and x values for the training set of binary mixtures are reported in

Table S6.

Table S6. Interaction energies AAG and interaction parameters X calculated for the training set of binary mixtures.

Binary mixture ~ AAG (kg mol) X
APY-BA
m(APY) = 0.3) 458 368
APY-BP
CiAPY) < 0.2 3.68 1.51
APY-DQUI
Fonip) = 0.2 3.27 3.08
APY-HBA 576 149
(“m(APY) = 0.7) ' '
APY-HQUI
(Fn(APY) = 0.7) -1.58 -1.63
APY-IMZ
. 0.14
m(APY) = 0.3) 0.02
APY-PHE
(AP = 06) 3.27 1.67
APY-THY
it = 0.2 -3.62 -3.11
BA-BP
ooy < 0.9 0.05 0.76
(xz;\?ggl@ 12 22
(ng:fg 8) o o
BA-HQUI
0. -1.87
(*m(BA) = 0.8) 0.64
(xm’?;/;-)mfzo,g) 276 -0.24
- 5’;‘;‘; ’:’j ) -0.24 -1.00
BA-THY
. 0.62
(*m(BA) = 0.3) 198
BP-DQUI
Fn(BP) - 0.7) -0.02 -0.01
xBP-HfA 048 145
("m(BP) =0.8)
BP-HQUI
(5P - 0.) 3.79 1.83
(xm?;)m:i,e) 5.41 2.10
(xmB(;;')”:iB) 0.01 0.05
("mB}ZI;TTO(A) ~4.40 007
DQUI-HBA
0.84
*m(DQUI) = 0.8) 135
DQUI-HQUI 2.79 1.27
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*m(DQUI) = 0.8)

. DQuF-Imz 4.72 1.33
*m(DQUI) = 0.3)
DQUI-PHE -0.05 0.40

(*m(DQUI) = 0.8)
Table S6 Continued. Interaction energies AAG and interaction parameters X calculated for the training set of binary
mixtures.

DQUI-THY

-5. -0.49
*m(DQUI) = 0.3) 540
(XZZAB:SZI:: ) -0.14 -3.69
(xm“('l’j;‘/;)”fiz) 151 -1.90
xHBA'Pf’E 212 1.06
(*m(HBA) = 0.3)
xHBA'THY 2.19 0.47
(“m(HBA) = 0.2)
(xm"(’k?éfx)”fza 2 -0.73 -1.09
HQUI-PHE 3.39 0.65
(*m(HQUI) = 0.4)
JHRULTHY T g6 078
IMZ-PHE
1.52
(*m(IMZ) = 0.8) 4.93
IMZ-THY
- -0.57
m(IMZ) = 0.4) 0.48
PHE-THY -4.37 -0.85

(*m(PHE) = 0.2)
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PoEM graphical interface

PoEM exhibits a simple graphical user interface (GUI) divided into two parts which differentiate for
the type of calculations (i.e. multi-tables and single-plot) (Figure S48).

[ Predictor of Eutectic Mixtures (POEM) — O X

Name of the Molecule of Interest:
Melting Temperature of the Molecule of Interest (K):

Multi-tables section
Enthalpy of Fusion of the Molecule of Interest (kJ/mol):

Multi-tables

Molecule of Interest: Coformer:

Name of Components:
Melting Temperatures (K):

Enthalpies of Fusion (kJ/mol): | | > Single-plot section

Interaction parameter x:

Single-plot
| sigepiot ] )

M. Prencipe, P.P. Mazzeo, A. Bacchi*, RSC Mechanochemistry 2024

Figure S48. Graphical visualization of POEM’s GUI.

In the multi-tables section of POEM’s GUI, the tool calculates the eutectic point of binary mixtures
obtained by combining a specific molecule of interest with 10x10 potential molecular partners. The
input data are the enthalpy of fusion and the melting temperature of the molecule of interest. The
output tables report Xeut and Teut values for 10x10 simulated binary mixtures at 4 different X values
(-4, -2, 0 ,3), taken from Table 1. Therefore, for each ¥ value two tables are provided, one referring
to 10x10 Xeut and the other to the associated 10x10 Teut, for a total number of 8 tables (Figure
S49). The plot of tables can be also saved as image.
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X =-4, Xeut X =-2, Xeut X =0, Xeut X =3, Xeut

10 {0.41 045 049 052 054 056 058 059 060 062 10 {0.40 045 049 052 054 056 058 059 061 062 10 {038 | 0.44 048 051 054 056 058 060 061 063 10 {092 092 092 092 092 091 091 091 081 091

14 {043 048 051 054 057 059 061 063 064 066 14 {043 048 052 056 058 061 063 065 066 068 14 {044 050 055 059 063 065 068 070 072 074 14 {093 094 094 095 095 095 096 096|096 096
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Figure S49. Resuming tables generated by POEM of eutectic compositions and temperature obtained combining thymol
with 10x10 potential coformers at different x values (-4, -2, 0, 3).

The section of single-plot of POEM’s GUI allows to calculate the eutectic point for a binary mixture,
starting from the enthalpies of fusion and melting temperatures of both components, and the
interaction parameter X. The Schroeder-Laar’s curves of components and the calculated eutectic
point are plotted in a binary phase diagram, together with the ideal curves and eutectic point
obtained in ideal conditions (¥ = 0), to visualize the deviation from ideality (figure S50). Even in this
case, the binary phase diagram can be saved as image or CSV file.
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Figure S50. Example of binary phase diagram generated by POEM for THY-BPY binary mixture in ideal (x = 0) and not-
ideal (x = - 0.96) conditions.
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