Supporting information

For

Homogenization Offers Access to Quinoxalines in Minutes: A Solvent-free, Catalyst-free Protocol with Near-zero E-factor

Abboy Chatterjee,^a Didreekshya Mahanta,^a Shamima Hussain,^b Amrita Chatterjee,*^a and Mainak Banerjee*^a

^aDepartment of Chemistry, Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa, 403726, INDIA.

^bUGC-DAE CSR, Kalpakkam Node, Kokilamedu 603104, TN, INDIA.

Emails of corresponding authors: mainak@goa.bits-pilani.ac.in; amrita@goa.bits-pilani.ac.in

Table of contents, spectral data, and copies of spectra

Table of contents	Page no.
General experimental details	S2
General procedure for the synthesis of quinoxalines	S2
Procedure for Scale-up	S3
Reaction monitoring by solid-state infrared spectroscopy (Figure S1)	S3
Schematic representation of high-throughput synthesis of quinoxalines (Figure S2)	S3
Comparison with solution phase (Table S1)	S4
Comparative study of quinoxaline synthesis with existing literature ((Table S2 and S3)	S4-S5
E-factor and Ecoscale score calculations	S5-S6
Spectral characterization	S6-S14
References	S14-S16
Copies of ¹ H NMR and ¹³ C NMR spectra of quinoxalines (Figure S3-S46)	S17-S60

General experimental details: The chemicals were obtained from Sigma-Aldrich, Alfa Aesar, or TCI India and used directly without further purification. Common reagents and solvents of AR grade were obtained from local suppliers. The mechanochemical reactions were carried out in 2 mL homogenizing tubes made of polypropylene with 1 g of 2 mm SS ball in iRupt Jr, an indigenous mini-cell homogenizer (Neuation). The reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm silica gel aluminum plates (60F-254) using UV light (254 or 365 nm) to monitor the progress of the reactions. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance (500 MHz) NMR instrument with CDCl₃ as the solvent. Tetramethylsilane (TMS) was used as an internal standard for ¹H and ¹³C NMR spectroscopy. Chemical shifts are reported in parts per million (δ) units. Coupling constants are reported in hertz (Hz). Standard abbreviations are used for representing the multiplicity of NMR peaks, such as s (singlet), bs (broad singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet), and m (multiplet). The melting point was measured in the EZ-Melt, Automatic Melting Point Apparatus (Stanford Research System). Mass spectra were recorded on a single quad LC-MS, Agilent using electrospray ionization (ESI) as an ion source.

General procedure for the synthesis of quinoxalines: *o*-Diaminoarene (**1**, 0.5 mmol) and 1,2dicarbonyl compound (**2**, 0.5 mmol) was taken in a 2 mL polypropylene tube containing 1 g of 2 mm SS balls. The reaction was set to a speed of 4000 RPM in iRupt Jr instrument and was homogenized for 1 x 3 min with intermittent mixing (if required). The progress of the reaction was monitored by TLC. The product was taken out from the tube, the balls were separated using a magnetic retriever whenever possible, and the solid mass was air-dried to afford the corresponding quinoxaline derivative (**3**).

In selective cases, as mentioned in Table 2, the crude product was subjected to flash chromatography (silica gel, 230-400 mesh) and eluted by 10% EtOAc in petroleum ether to afford the pure product (**3**).

Procedure for scale-up: *o*-Diaminoarene (2.5 mmol) and 1,2-dicarbonyl (2.5 mmol) were taken in a 2 mL homogenizing tube containing 1 g of 2 mm SS balls. The reaction was set to a speed of 4000 RPM in the iRupt Jr instrument and was homogenized for 3 min. The product was isolated, as mentioned before.

Reaction monitoring by solid-state infrared spectroscopy

Figure S1. Monitoring of the reaction mixture in solid state by time-scale infrared spectroscopy. The disappearance of the carbonyl peak at 1662 cm⁻¹ and the gradual increase of the signature peaks at 1346, and 770 cm⁻¹ just after 30 sec indicates the formation of **3a**.

Schematic representation of high-throughput synthesis of quinoxalines

Figure S2. Schematic representation of reaction set-up for semi high-throughput synthesis of quinoxalines using homogenizer.

Table S1: Comparison with solution phase:

Entry	Solvent	Time (min)	Yield (%) ^b	% recovery of 2
1	Neat	120	11	69
2	Acetonitrile	120	82	12
3	Ethanol	60	91	
4	Chloroform	120	68	18
5	Tetrahydrofuran	120	62	24

^aIn each case, 0.5 mmol each of **1a** and **2a** are taken in 2 mL of solvent (other than entry 1) and the mixture was stirred at room temperature. ^bAll are isolated yields.

Table S2: Comparative study of quinoxaline synthesis (selected methods)^a

Entr Y	Media	Condition	Catalyst	Time (min)	Yiel d (%)	E- factor ^b	Eco- scal e	Referenc e
Conve	ntional so	lution phase						
1	CH₃CN	rt	Iodine	3	98	1.6	89	1
2	Ethanol	rt	$CuSO_{4.}5H_2O$	8	96	8.8	97	2
3	DMSO	rt	Iodine	35	95	4.2	97	3
4	Ethanol	rt	MnCl ₂	17	94	9	96	4
Green	-protocols							
5	Water	rt	ltaconic acid	60	96	0.2	97	5
6	Solid phase	heating (100 °C)	CuO@g- C ₃ N ₄	3	87	0.3	89	6
7	Water	ultrasonication	-	0.8	98	0.1 ^c	96	7
8	Glycero l	microwave	-	3	93	9.7	82	8
9	Neat	homogenizer	-	3	99	0.01	97.5	Our work

" Unless otherwise noted the comparisons are done taking **3a** as the model product. ^bWater formed as the sideproduct of the reaction was not considered as waste during the E-factor calculation. ^c Ninhydrin was used insteadofbenziltocalculatetheE-factorandeco-scalescores.

Table S3: Mechanochemical methods using diamine and dicarbonyl^a

Entry	Mechanical technique	Catalyst	Milling auxiliary	Milling condition /time	Isolation/ Purification	Yield (%)	E-factor	Refer ence
1	Hand grinding	-	EtOH (LAG)	10 min	Recrystalliza- tion (EtOH)	95	0.16	9
2	Hand grinding	-	SiO ₂	15 min	Recrystallizati on (EtOH)	94	4	10
3	Hand grinding	nano- kaolin/ BF ₃ / Fe ₃ O ₄	-	20 min	Recrystalliza- tion (EtOH)	98	0.26	11
4	Hand grinding	Acetic acid	-	10 min	Recrystalliza- tion (acetone)	92 ^c	0.34	12
5	Hand grinding	-	AI_2O_3	10 min	Chromato- graphy	98	1.96	13

6	Planetary ball mill	La(DS) ₃	NaCl	600 RPM, 30 min	Chromato- graphy	99	2.1	14
7	Mixer mill	TCCA, p-TSA, K ₂ CO ₃	-	20 Hz, 10 h	Chromato- graphy	78	1.8	15
8	Homoge- nizer	-	-	4000 RPM, 3 min	no work-up, no purification	99	0.01	Our work

^{*a*} Unless otherwise noted the comparisons are done taking **3a** as the model product. ^{*b*}Water formed as the side product of the reaction was not considered as waste during the E-factor calculation. ^{*c*} Ninhydrin was used instead of benzil to calculate the E-factor. ^{*d*}The calculations are done using 4-bromoacetophenone and OPD as the reactants.

For a typical E-factor calculation:

Parameters	Values	Remarks
%Yield	99	Calculated for 3a
Wt. of generated waste (mg)	3	
Wt. of end product (mg)	279	
E-factor = Wt. of generated waste/Wt. of end product	0.01	

For a typical Ecoscale score calculation:

Parameters	Penalty points	Remarks
%Yield = (100-%Yield)/2	0.5	Calculated for 3a
Price of the reaction component	0	Inexpensive (<10US\$)
Technical setup	2	Unconventional activation technique (Homogenizer)
Temperature/Time	0	Room temperature reaction/<1 h
Workup and purification	0	None
Sum of penalty points	2.5	
Eco-scale score (100-Sum of penalty)	97.5	

Spectral characterization

2,3-Diphenylquinoxaline (3a):⁹ White solid, 140 mg (99%) m.p.: 124-125
°C (Lit. m.p.: 126-127 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.30-7.34 (m, 6H), 7.49-7.51 (m, 4H), 7.74-7.76 (m, 2H), 8.15-8.17 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 128.3, 128.8, 129.2, 129.8, 130.0, 139.1, 141.2, 153.5. ESI-MS: *m/z* 283 [M + H]⁺.

3d **6-Methyl-2,3-diphenylquinoxaline (3b):**⁹ Light brown solid; 147 mg (99%), m.p.: 114-116 °C (Lit. m.p.: 118-119 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.59 (s, 3H), 7.28-7.34 (m, 6H), 7.49 (d, J = 6.8 Hz, 4H), 7.58 (dd, $J_1 = 1.9$ Hz, $J_2 = 8.5$ Hz, 1H), 7.93 (s, 1H), 8.04 (d, J = 8.5 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 21.9, 128.0, 128.2, 128.6,

128.7, 129.8, 129.9, 132.3, 139.2, 139.7, 140.5, 141.3, 152.6, 153.3; ESI-MS: *m/z* 297 [M + H]⁺.

5,7-Dimethyl-2,3-diphenylquinoxaline (3c):⁹ Off-white solid, 153 mg (99%), m.p.: 94-96 °C (Lit. m.p.: 94-96 °C); ¹H NMR (500 MHz,

CDCl₃): δ (ppm) 2.54 (s, 3H), 2.79 (s, 3H), 7.29-7.32 (m, 6H), 7.42 (s, 1H), 7.48-7.54 (m, 4H), 7.75 (s, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 17.0, 21.9, 125.7, 128.0, 128.2, 128.5, 128.6, 129.8, 130.1, 132.2, 137.0, 138.9, 139.5, 139.6, 140.1, 141.3, 150.9, 152.7; ESI-MS: *m/z*

311 [M + H]⁺.

6-Chloro-2,3-diphenylquinoxaline (3d):⁹ White solid, 157 mg (99%), m.p.: 119-121 °C (Lit. m.p.: 124-125 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.30-7.36 (m, 6H), 7.48 (d, *J* =7.4 Hz, 4H), 7.69 (d, *J* = 8.8 Hz, 1H), 8.08 (d, *J* = 8.9 Hz, 1H), 8.15 (s, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 128.1, 128.3, 129.0, 129.1, 129.81, 129.85, 130.4, 130.9, 135.6, 138.6, 138.7, 139.7, 141.5, 153.6, 154.3; ESI-MS: *m/z* 317 [M + H]⁺.

6-Benzoyl-2,3-diphenylquinoxaline (3e):¹⁰ White solid, 183 mg (95%), m.p.: 149-151 °C (Lit. m.p.: 147-148 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.30-7.39 (m, 6H), 7.49-7.54 (m, 6H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.89 (d, *J* = 7.3 Hz, 2H), 8.23-8.28 (m, 2H), 8.52 (s, 1H); ¹³C {¹H} NMR (125

MHz, CDCl₃): δ (ppm) 128.4, 128.5, 129.1, 129.3, 129.7, 129.8, 129.9, 129.92, 130.1, 132.4, 132.8, 137.2, 138.3, 138.61, 138.64, 140.2, 143.0, 154.6, 155.1, 195.8; ESI-MS: *m/z* 387 [M + H]⁺.

2,3-Di-*p*-tolylquinoxaline (3f):⁹ White solid, 153 mg (99%), m.p.: 146-147 °C (Lit. m.p.: 146-147 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.35 (s, 6H), 7.13 (d, *J* = 7.8 Hz, 4H), 7.41 (d, *J* =

8.1 Hz, 4H), 7.72 (dd, *J*₁ = 3.5 Hz, *J*₂ = 6.5 Hz, 2H), 8.13 (dd, *J*₁ = 3.5 Hz, *J*₂ = 6.5 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 21.3, 129.0, 129.1, 129.6, 129.7, 136.3, 138.7, 141.1, 153.5; ESI-MS: *m/z* 311 [M + H]⁺.

2,3-Dimethylquinoxaline (3g):⁹ Light brown solid, 78 mg (99%), m.p.: 92-94 °C (Lit. m.p.: 105-106 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.70 (s, 6H), 7.63 (dd, J_1 = 3.4 Hz, J_2 = 6.4 Hz, 2H), 7.95 (dd, J_1 = 3.6 Hz, J_2 = 6.4 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 23.1, 128.2, Λ = 128.9, 140.9, 153.4; ESI-MS: m/z 159 [M + H]⁺.

<u>3</u>k

3i

Ο

O₂N

3j 2,3,5-Trimethylquinoxaline (3h):⁹ Brown solid, 85 mg (99%), m.p.: 90-92 °C (Lit. m.p.: 90-91 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.51 (s, 3H), 2.66 (s, 6H), 7.44 (dd, $J_1 = 2.0$ Hz, $J_2 = 8.6$ Hz, 1H), 7.70 (s, 1H), 7.82 (d, J = 8.5 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 21.7, 23.0, 23.1, 127.2, 127.8, 131.0, 139.1, 139.4, 141.1, 152.4, 153.3; ESI-MS: m/z

173 [M + H]⁺.

2,3,5,7-Tetramethylquinoxaline (3i):⁹ White solid, 92 mg (99%), m.p.:
68-69 °C (Lit. m.p.: 68-69 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.48 (s, 3H), 2.69 (s, 5H), 2.71 (s, 3H), 7.32 (s, 1H), 7.64 (s, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 17.0, 21.7, 22.4, 23.1, 124.2, 131.5, 136.2, 139.0, 139.4, 151.4, 151.9; ESI-MS: *m/z* 187 [M + H]⁺.

6-Chloro-2,3-dimethylquinoxaline (3j):⁹ Brown solid, 95 mg (99%), m.p.: 84-86 °C (Lit. m.p. : 84–86 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.69 (s, 6H), 7.57 (dd, J_1 = 2.3 Hz, J_2 = 8.9 Hz, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 2.4 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 23.1, 23.2, 127.3, 129.5, 129.8, 134.4, 139.5, 141.4, 153.7, 154.5; ESI-MS: m/z 193 [M + H]⁺.

2,3-Dimethyl-6-nitroquinoxaline (3k):⁹ Brown solid, 100 mg (99%), m.p.: 134-135 °C (Lit. m.p: 135–136 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.76 (s, 6H), 8.06 (dd, *J*₁ = 2.8 Hz, *J*₂ = 9.1 Hz, 1H), 8.38 (dt, *J*₁ = 3.0 Hz, *J*₂ = 9.1 Hz,

1H), 8.84 (s, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 23.3, 23.5, 122.3, 124.8, 129.9, 139.9, 143.7, 147.1, 156.3, 157.2; ESI-MS: *m/z* 204 [M + H]⁺.

N6-Benzoyl-2,3-Dimethyl-quinoxaline (3l):16 Yellow solid, 126 mg (96%)3hm.p.: 122-124 °C (Lit. m.p.: 107-110 °C); 1H NMR (500 MHz, CDCl_3): δ (ppm) 2.70 (s, 3H), 2.73 (s, 3H), 7.46 (t, J = 7.6 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.82 (d, J = 7.9Hz, 2H), 8.04 (d, J = 8.7 Hz, 1H), 8.11 (dd, $J_1 = 1.8$ Hz, $J_2 = 8.7$ Hz, 1H), 8.31 (s, 1H); ^{13}C {1H} NMR

(125 MHz, CDCl₃): δ (ppm) 23.2, 23.4, 128.4, 128.8, 128.9, 130.0, 131.7, 132.7, 137.2, 137.3, 140.0, 142.9, 154.8, 155.7, 195.9. ESI-MS: *m/z* 263 [M + H]⁺.

1,2,3,4-Tetrahydrophenazine (3m):⁵ Brown solid, 98 mg (98%), m.p.: 87-88 °C (Lit. m.p.: 90 °C) ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.95 (s, 4H), 3.07 (s, 4H), 7.55-7.58 (m, 2H), 7.86-7.90 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 22.6, 33.02, 33.04, 118.2, 128.1, 128.2, 128.7, 128.8, 141.02, 141.03, 153.9, 154.0. ESI-MS: *m/z* 185 [M + H]⁺.

7-Methyl-1,2,3,4-tetrahydrophenazine (3n):⁵ Yellow solid, 95 mg (96%), m.p.: 88-90 °C (Lit. m.p.: 92 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.97 (s, 4H), 2.50 (s, 3H), 3.08 (s, 4H), 7.43 (d, J = 8.5 Hz, 1H), 7.68 (s, 1H), 7.79 (d, J = 8.5 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 21.7, 22.81, 22.83, 33.0, 33.1, 127.1, 127.7, 131.2, 139.2, 139.6, 141.2,

153.0, 153.9. ESI-MS: *m/z* 199 [M + H]⁺.

7-Nitro-1,2,3,4-tetrahydrophenazine (30):⁵ Light brown solid, 106 mg (93%), m.p.: 103-105 °C (Lit. m.p.: 101 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.04 (t, J = 3.6 Hz, 4H), 3.17 (t, J = 3.0 Hz, 4H), 8.04 (d, J = 9.1 Hz, 1H), 8.38 (dd, $J_1 = 2.7$ Hz, $J_2 = 9.1$ Hz, 1H), 8.82 (d, J = 2.6 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 22.4, 33.2, 33.5, 122.3, 124.9,

129.9, 139.9, 143.7, 147.1, 157.0, 158.0; ESI-MS: *m/z* 230 [M + H]⁺.

7-Chloro-1,2,3,4-tetrahydrophenazine (3p):⁵ Yellow solid, 102 mg (94%), m.p.: 91-93 °C (Lit. m.p.: 94 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.00 (t, J = 3.6 Hz, 4H), 3.10-3.12 (m, 4H), 7.56 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.92 (s, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 22.6, 22.7, 33.1, 33.2, 127.3, 129.6, 129.9, 134.5, 139.7, 141.4, 154.4, 155.2; ESI-MS: *m/z* 219 [M + H]⁺.

3m

Quinoxaline (3q):⁹ Light yellow liquid, 60 mg (92%); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.69 (dd, J_1 = 3.5 Hz, J_2 = 6.5 Hz, 2H), 8.03 (dd, J_1 = 3.6 Hz, J_2

= 6.5 Hz, 2H), 8.76 (s, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 129.3, 129.9, 142.8, 144.8; ESI-MS: *m/z* 131 [M + H]⁺.

6-Methylquinoxaline (3r):⁹ Colourless liquid, 68 mg (95%); ¹H NMR (500 MHz, $CDCl_3$): δ (ppm) 2.55 (s, 3H), 7.56 (d, J = 8.6 Hz, 1H), 7.82 (s, 1H), 7.95 (d, J = 8.6 Hz, 1H), 8.74 (d, J = 11.9 Hz, 2H); ¹³C {¹H} NMR (125 MHz,

CDCl₃): δ (ppm) 21.8, 128.2, 128.9, 132.4, 140.6, 141.5, 143.0, 144.0, 144.8; ESI-MS: *m/z* 145 $[M + H]^+$.

6-Chloroquinoxaline (3s):⁹ Off-white solid, 77 mg (94%), m.p.: 63-65 °C (Lit. m.p.: 62-64 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.68 (dd, J_1 = 2.4 Hz, J_2 = 11.3 Hz, 1H), 8.01 (d, J = 8.9 Hz, 1H), 8.07 (d, J = 2.4 Hz, 1H), 8.81 (dd, J_1 = 1.9 Hz, J_2 = 6.8 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 128.4, 130.7, 131.1, 135.9, 141.5, 143.2, 145.0, 145.7; ESI-MS: m/z 165 [M + H]⁺.

6-Nitroquinoxaline (3t):⁹ Light yellow solid, 86 mg (98%), m.p.: 158-160 °C (Lit. m.p.: 158-160 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.25 (d, J = 9.2 Hz, 1H), 8.52 (dd, $J_1 = 2.5$ Hz, $J_2 = 9.2$ Hz, 1H), 8.91-9.07 (m, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 123.5, 126.0, 131.4, 141.9, 145.3, 147.0, 147.7; ESI-MS: m/z 176 [M + H]⁺.

6-Benzoylquinoxaline (3u):¹⁷ Light Brown solid, 106 mg (91%), m.p: 116-118 °C (Lit. m.p. 117 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.49 (t, J = 7.8 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.84 (d, J = 7.9 Hz, 2H), 8.20 (t, J = 10.8 Hz, 2H), 8.44 (s, 1H), 8.90 (dd, J₁ = 2.0 Hz, J₂ = 6.2 Hz, NMR (125 MHz, CDCl₃): δ (ppm) 128.5, 129.9, 130.0, 133.0, 136.9, 138.5, 142.1, 144.6, 146.0, 146.6,

Acenaphtho[1,2-*b*]quinoxaline (3v):⁹ Light yellow solid, 125 mg (99%), m.p.: 244-246 °C (Lit. m.p.: 243–245 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.70-7.72 (m, 2H), 7.76-7.80 (m, 2H), 8.04 (dd, J_1 = 2.4 Hz, J_2 = 8.2 Hz, 2H), 8.15-8.18 (m, 2H), 8.37 (d, J = 7.1 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 121.8, 128.6, 129.2, 129.4, 129.5, 130.0, 131.7, 136.4, 141.2, 154.0; ESI-MS: m/z 255 [M + H]⁺.

Cl N **5-Methylacenaphtho**[1,2-*b*]quinoxaline (3w):⁹ Light yellow solid, 132 mg (99%), m.p.: 282-284 °C (Lit. m.p.: 282-284 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.93 (s, 3H), 7.57-7.64 (m, 2H), 7.82 (t, J = 8.4 Hz, 2H), 8.03 (d, J = 8.2 Hz, 1H), 8.08 (dd, $J_1 = 3.1$ Hz, $J_2 = 8.4$ Hz, 2H), 8.42 (t, J = 6.1 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 17.5, 121.7, 127.4, 128.60, 128.63, 128.8, 129.2, 129.3, 129.5, 130.0, 132.1, 132.4, 136.4,

6-Chloroacenaphtho[1,2-*b***]quinoxaline (3y):**⁹ Dark brown solid, 142mg (99%) m.p.: 240-242 °C (Lit. m.p.: 240-242 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.61 (d, *J* = 8.8 Hz, 1H), 7.75-7.78 (m, 2H), 8.02-8.04 (m, 3H), 8.09 (s, 1H), 8.29-8.32 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 122.0, 122.2, 128.5, 128.6, 129.6, 129.81, 129.88, 129.9, 130.5, 131.3, 131.3, 134.7, 136.5, 139.6, 141.5, 154.0, 154.6; ESI-MS: *m/z* 289 [M +

H]+.

Phenanthro[9,10-*b***]quinoxaline (3z):**⁹ Yellow solid, 138 mg (99%), m.p.: 226-227 °C (Lit. m.p.: 225–226 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.68-7.76 (m, 4H), 7.80-7.82 (m, 2H), 8.27 (dd, J_1 = 3.5 Hz, J_2 = 6.4 Hz, 2H), 8.49 (d, J = 7.9 Hz, 2H), 9.34 (d, J = 6.3 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 122.8, 126.2, 127.9, 129.4, 129.7, 130.2, 130.3, 132.0,

142.1, 142.4; ESI-MS: m/z 281 [M + H]+.

5-Methylphenanthro[9,10-*b***]quinoxaline (3aa):**⁹ Brown solid, 145 mg (99%), m.p.: 222-224 °C (Lit. mp.: 222-224 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.98 (s, 3H), 7.61-7.75 (m, 6H), 8.10 (d, *J* = 8.4 Hz, 1H), 8.48-8.50 (m, 2H), 9.32-9.36 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 17.4, 122.83, 122.85, 126.1, 127.2, 127.7,

127.8, 129.3, 129.6, 130.0, 130.1, 130.3, 130.6, 131.9, 137.7, 141.0, 141.3, 141.8, 142.2; ESI-MS: *m/z* 295 [M + H]⁺.

11H-Indeno[1,2-

mg (99%), m.p.: (500 MHz, CDCl₃): δ Hz, 2H), 7.77 (t, *J* = 7.6 Hz, 2H), 8.18 (d,

b]quinoxalin-11-one (3ab):⁷ Yellow solid, 115 216-218 °C (Lit. m.p.: 217–218 °C); ¹H NMR (ppm) 7.55 (t, *J* = 7.4 Hz, 1H), 7.71 (q, *J* = 7.8 7.8 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 8.05,(t, *J* = *J* = 8.2 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃):

δ (ppm) 122.5, 124.7, 129.6, 130.2, 131.5, 132.4, 132.5, 136.6, 136.8, 141.5, 142.6, 143.0, 149.2, 156.5, 189.8; ESI-MS: *m/z* 233 [M + H]⁺.

6-Methyl-11H-indeno[1,2-b]quinoxalin-11-one (3ac):¹⁸ Yellow solid, 122 mg (99%), m.p.: 224-225 °C (Lit. m.p: 227-229 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.77 (s, 3H), 7.50-7.59 (m, 3H), 7.69 (t, J = 7.3 Hz, 1H), 7.84 (d, J = 7.5 Hz, 1H), 7.99-8.03 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 17.3, 122.3, 124.5, 129.3, 129.8, 132.1, 132.7, 136.5, 136.6, 138.3, 141.8, 142.1, 142.7, 148.7, 155.4, 190.3; ESI-MS: m/z 247 [M + H]⁺.

2,3-di(pyridin-2-yl)quinoxaline (3ad):¹⁹ Brown solid, 141 mg (99%), m.p.: 185-187 3af °C (Lit. m.p.: 188-191 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.18-7.20 (m, 2H), 7.75-7.78 (m, 4H), 7.92 (d, J = 7.8 Hz, 2H), 8.18-8.20 (m, 2H), 8.34 (d, J = 4.5 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 122.9, 124.1, 129.2, 130.4, 136.5, 141.0, 148.4, 152.2, 157.2; ESI-MS: *m/z* 285 [M + H]⁺.

`N´ `N´ 3ag

Ph **2,3-Dimethylpyrido[2,3-b]pyrazine (3ae):**⁹ Light brown solid, 79 mg (99%), m.p.: 133-135 °C (Lit. m.p.: 133-135 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.70 (s, 3H), 2.74 (s, 3H), 7.54-7.56 (m, 1H), 8.26 (dd, $J_1 = 1.9$ Hz, $J_2 = 8.4$ Hz, 1H), 8.97 (d, J = 2.5 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 23.0, 23.4, 124.3, 135.8, 137.3, 150.1, 152.5, 155.0, 157.3; ESI-MS: *m/z* 160 [M + H]⁺.

Bi 3ah

Pyrido[2,3-b]pyrazine (3af):⁹ Light brown solid, 60 mg (91%), m.p.: 135-137 °C (Lit. m.p.: 133-135 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.71-7.74 (m, 1H), 8.46 (dd, J_1 = 1.9 Hz, J_2 = 8.3 Hz, 1H), 8.93 (s, 1H), 9.06 (s, 1H), 9.17 (dd, J_1 = 1.9 Hz, J_2 = 4.2 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃):

δ (ppm) 125.5, 138.4, 138.6, 146.1, 147.8, 151.4, 154.3; ESI-MS: *m/z* 132 [M + H]⁺.

2,3-diphenylpyrido[2,3-b]pyrazine (3ag):10 Yellow solid, 140 mg (99%), m.p.: 141–143 °C (Lit. m.p.: 144-145 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.18-7.29 (m, 6H), 7.44 (d, J = 7.4 Hz, 2H), 7.53 (d, J = 7.6 Hz, 2H), 7.57-7.58 (m, 1H), 8.39 (d, J = 8.7 Hz, 1H), 9.04-9.05 (m, 1H); ¹³C {¹H} NMR

(125 MHz, CDCl₃): δ (ppm) 125.0, 127.9, 128.2, 129.1, 129.2, 129.6, 130.0, 135.9, 137.8, 137.9, 138.3, 149.6, 153.9, 154.5, 156.0; ESI-MS: *m/z* 284 [M + H]⁺.

Bromo-2,3-diphenylpyrido[2,3-b]pyrazine (3ah):⁹ White solid, 179 mg (99%), m.p.: 148-150 °C (Lit. m.p.: 148-150 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.28-7.39 (m, 6H), 7.50 (d, J = 6.8 Hz, 2H), 7.58 (d, J = 7.0 Hz, 2H), 8.63 (d, J = 2.4 Hz, 1H), 9.11 (d, J = 2.4 Hz, 1H); ¹³C {¹H} NMR (125)

MHz, CDCl₃): δ (ppm) 120.9, 128.2, 128.4, 129.6, 129.7, 129.8, 130.2, 136.4, 137.7, 138.0, 139.4, 148.2, 155.1, 155.4, 156.5; ESI-MS: *m/z* 364 [M + H]⁺ (for ⁷⁹Br), 366 ⁸¹Br). [M + H]⁺ (for

Bromo-2,3-dimethylpyrido[**2,3-***b*]**pyrazine** (**3ai**):⁹ Brown solid, 117 mg (99%), m.p.: 120-122 °C (Lit. m.p.: 120-122 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.72 (s, 3H), 2.74 (s, 3H), 8.44 (d, J = 2.6 Hz, 1H), 8.99 (d, J = 2.6 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 23.0, 23.5, 119.8, 136.2, 138.8,

148.6, 153.6, 156.1, 157.6; ESI-MS: *m*/*z* 238 [M + H]⁺ (for ⁷⁹Br), 240 [M + H]⁺ (for ⁸¹Br).

3-Bromo-6,7,8,9-tetrahydropyrido[**2,3-***b*]quinoxaline (**3***a***j**): Yellow solid, 126 mg (96%), m.p.: 126-128 °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.01-2.04 (m, 4H), 3.13-3.21 (m, 4H), 8.44 (s, 1H), 9.01 (s, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 22.3, 22.5, 33.1, 33.5, 119.9, 136.4, 138.7, 148.5, 153.9, 156.8, 158.3; ESI-MS: *m/z* 264 [M + H]⁺ (for ⁷⁹Br), 266 [M + H]⁺ (for ⁸¹Br).

7-Bromopyrido[2,3-*b*]**pyrazine (3ak)**:⁹ Off-white solid, 101 mg (97%), m.p.: 158-160 °C (Lit. m.p.: 158-160 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.62 (d, *J* = 2.5 Hz, 1H), 8.91 (s, 1H), 9.05 (s, 1H), 9.15 (d, *J* = 2.5 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 121.4, 138.6, 139.9, 146.8, 147.9, 149.7, 155.5; ESI-MS: *m/z* 210 [M + H]⁺ (for ⁷⁹Br), 212 [M + H]⁺ (for ⁸¹Br).

12-Bromodibenzo[*f*,*h*]**pyrido**[**2**,**3**-*b*]**quinoxaline** (**3al**):²⁰ Yellow solid, 178 mg (94%), m.p.: 216-216 °C ; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.60-7.77 (m, 4H), 8.42 (d, *J* = 8.1 Hz, 2H), 8.67 (s, 1H), 9.08 (d, *J* = 7.9 Hz, 1H), 9.18 (s, 1H), 9.33 (d, *J* = 8.0 Hz, 1H); ¹³C {¹H} NMR (125

MHz, CDCl₃): δ (ppm) 120.5, 122.8, 122.9, 126.5, 127.3, 128.1, 128.2, 129.1, 129.3, 131.2, 131.3, 132.4, 132.5, 137.3, 139.4, 143.9, 144.6, 148.0, 155.3; ESI-MS: m/z 347 [M + H]⁺ (for ⁷⁹Br), 349 [M + H]⁺ (for ⁸¹Br).

2,3-Di(pyridin-2-yl)pyrido[2,3-*b*]**pyrazine (3am):**¹⁹ Brown solid, 134 mg (94%), m.p.: 267-269 °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.25-7.29 (m, 2H), 7.77-7.80 (m, 1H), 7.84-7.92 (m, 2H), 7.99 (d, *J* = 7.8 Hz, 1H), 8.28 (d, *J* = 4.5 Hz, 1H), 8.33 (d, *J* = 7.8 Hz, 1H), 8.40 (d, *J* = 4.8 Hz, 1H),

8.59 (dd, J_1 = 1.9 Hz, J_2 = 8.3 Hz, 1H), 9.23-9.24 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 123.2, 123.5, 124.1, 124.7, 125.7, 136.2, 136.7, 136.9, 138.3, 148.1, 148.6, 149.6, 153.9, 154.6, 155.2, 156.4, 157.0; ESI-MS: m/z 286 [M + H]⁺.

5,6-Dimethylpyrazine-2,3-dicarbonitrile (3an):²¹ Gray solid, 78 mg (99%), m.p.: 168-170 °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.68 (s, 6H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 22.6, 113.1, 130.3, 157.8; ESI-MS: *m/z* 159 [M + H]⁺.

3aq Pyrazine-2,3-dicarbonitrile (3ao):²² White solid, 62 mg (95%), m.p.: 132–134 °C (Lit. m.p.: 133–134 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.92 (s, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 112.6, 134.0, 147.1; ESI-MS: *m/z* 131 [M + H]⁺.

5,6-Diphenylpyrazine-2,3-dicarbonitrile (3ap):¹⁰ Brown solid, 134 mg (95%), m.p.: 210-212 °C (Lit. m.p.: 209-210 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.35 (t, *J* = 7.6 Hz, 4H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.51 (d, *J* = 7.7 Hz, 4H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 113.1, 128.8, 129.8, 131.1, 135.2, 155.4; ESI-MS: *m/z* 283 [M + H]⁺.

5,6,7,8-Tetrahydroquinoxaline-2,3-dicarbonitrile (3aq):²³ White solid, 91 mg (99%), m.p.: 140-142 °C (Lit. m.p.: 138-139 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.96-1.99 (m, 4H), 3.05-3.08 (m, 4H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 21.5, 32.2, 113.1, 130.1, 158.6. ESI-MS: *m/z* 185 [M + H]⁺.

5,6-Dimethyl-2,3-dihydropyrazine (3ar):²⁴ Liquid, 100 mg (91%); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 2.09 (s, 6H), 3.30 (s, 4H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ (ppm) 23.1, 44.7, 159.3. ESI-NC ______ NS: *m/z* 111 [M + H]⁺.

References:

1. S. V. More, M. N. V. Sastry, C.-C. Wang and C.-F. Yao, Molecular iodine: A powerful catalyst for the easy and efficient synthesis of quinoxalines, *Tetrahedron Lett.*, 2005, **46**, 6345–6348.

2. M. M. Heravi, S. Taheri, K. Bakhtiari and H. A. Oskooie, On Water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO₄.5H₂O, *Catal. Commun.*, 2007, **8**, 211–214.

3. R. S. Bhosale, S. R. Sarda, S. S. Ardhapure, W. N. Jadhav, S. R. Bhusare and R. P. Pawar, An efficient protocol for the synthesis of quinoxaline **3ap** derivatives at room temperature using molecular iodine as the catalyst, *Tetrahedron Lett.*, 2005, **46**, 7183–7186.

- 4. M. M. Heravi, K. Bakhtiari, H. A. Oskooie and S. Taheri, MnCl2-Promoted Synthesis of Quinoxaline Derivatives at Room Temperature, *Heteroat. Chem.*, 2008, **19**, 218–220.
- 5. K. J. Tamuli, S. Nath and M. Bordoloi, In water organic synthesis: Introducing itaconic acid as a recyclable acidic promoter for efficient and scalable synthesis of quinoxaline derivatives at room temperature, *J. Heterocycl. Chem.*, 2021, **58**, 983–1002.
- S. Gajurel, R. Sarkar, F. K. Sarkar, L. Kyndiah and A. K. Pal, A sustainable route toward the synthesis of highly substituted imidazole and quinoxaline derivatives using CuO@g-C₃N₄ as an efficient and reusable heterogeneous catalyst, *Appl. Organomet. Chem.*,2023, **37**, e7159.
- 7. A. Mishra, S. Singh, M. A. Quraishi and V. Srivastava, A catalyst-free expeditious green synthesis of quinoxaline, oxazine, thiazine, and dioxin derivatives in water under ultrasound irradiation, *Org. Prep. Proced.*, 2019, **51**, 345–356.
- 8. W.-J. Zhou, X.-Zh. Zhang, X.-B. Sun, B. Wang, J.-X. Wang and L. Bai, Microwave-assisted synthesis of quinoxaline derivatives using glycerol as a green solvent, *Russ. Chem. Bull.*, 2013, **62**, 1244–1247.
- 9. Z. T. Bhutia, G. Prasannakumar, A. Das, M. Biswas, A. Chatterjee and M. Banerjee, A Facile, catalyst-free mechano-synthesis of quinoxalines and their in-vitro antibacterial activity study *ChemistrySelect*, 2017, **2**, 1183–1187.
- G. C. Nandi, S. Samai, R. Kumar and M. S. Singh, Silica-Gel–Catalyzed Efficient Synthesis of quinoxaline derivatives under solvent-free conditions, *Synth. Commun.*, 2011, **41**, 417–425.
- B. F. Mirjalili and M. D. Tafti, Synthesis of quinoxalines promoted by eco-friendly nano-kaoline/BF₃/Fe₃O₄ nano-catalyst under grinding condition, *Sci. Iran.*, 2017, **24**, 3014-3021.
- 12. S. Das, P. Das, S. Maity, P. Ghosh and A. Dutta, Mechanochemical reaction of ninhydrin with aromatics, enols and amines: Synthesis, crystal structure and supramolecular self-assembly of cyclic and acyclic adducts, *Results Chem.*, 2023, **5**, 100713.
- 13. J. Li, D. Jiang, J. Chen, M. Liu, J. Ding and H. Wu, Eco-friendly synthesis of quinoxaline derivatives by grinding under solvent-free conditions, *J. Heterocycl. Chem.*, 2011, **48**, 403–406.
- Z. Wu, X. Li, P. Jiang, G. Feng, L.-A. Cao, X.-M. Wang, R. Tan and E. Feng, Mechanical milling promotes the preparation of catalyst lanthanum dodecyl sulfate and green solvent-free grinding for synthesis of N-heterocyclic derivatives, *Appl. Catal., A*, 2024, 684, 119893.
- H. Nagarajaiah, A. K. Mishra and J. N. Moorthy, Mechanochemical solid-state synthesis of 2-aminothiazoles, quinoxalines and benzoylbenzofurans from ketones by one-pot sequential acid- and base-mediated reactions, *Org. Biomol. Chem.*, 2016, **14**, 4129– 4135.
- 16. J. Peralta-Cruz, M. Díaz-Fernández, A. Ávila-Castro, D. Ortegón-Reyna and A. Ariza-Castolo, An experimental and theoretical study of intramolecular regioselective

oxidations of 6-substituted 2,3-dimethylquinoxaline derivatives, *New J. Chem.*, 2016, **40**, 5501–5515.

- 17. S. Samanta, A. Das Gupta and A. K. Mallik, An expedient "on-water" synthesis of quinoxalines, *Monatshefte Fur Chem. Chem. Mon.*, 2014, **145**, 1669–1673.
- C.-H. Tseng, Y.-R. Chen, C.-C. Tzeng, W. Liu, C.-K. Chou, C.-C. Chiu and Y.-L. Chen, Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents, *Eur. J. Med. Chem.*, 2016, **108**, 258–273.
- 19. J. J. Morales-Castellanos, K. Ramírez-Hernández, N. S. Gómez-Flores, O. R. Rodas-Suárez and J. Peralta-Cruz, *Molecules*, 2012, **17**, 5164–5176.
- 20. M. Jafarpour, A. Rezaeifard, M. Ghahramaninezhad and T. Tabibi, Reusable α -MoO₃ nanobelts catalyzes the green and heterogeneous condensation of 1,2-diamines with carbonyl compounds, *New J. Chem*, 2013, **37**, 2087.
- 21. G. R. Bardajee, R. Malakooti, F. Jami, Z. Parsaei and H. Atashin, Covalent anchoring of copper-schiff base complex into SBA-15 as a heterogeneous catalyst for the synthesis of pyridopyrazine and quinoxaline derivatives, *Catal. Commun.*, 2012, **27**, 49–53.
- 22. O. Hordiyenko, I. Rudenko, I. Zamkova, O. Denisenko, A. Biitseva, A. Arrault and A. Tolmachev, Facile synthesis of hydrazine derivatives of 5H-pyrrolo[3,4-*b*]pyrazine and 1h-pyrrolo[3,4-*b*]quinoxaline, *Synthesis*, 2013, **45**, 3375–3382.
- 23. S. Antoniotti and E. Duñach, Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines, *Tetrahedron Lett*, 2002, **43**, 3971–3973.
- 24. M. Jafarpour, A. Rezaeifard, R. Haddad and S. Gazkar, A reusable zirconium(IV) schiff base complex catalyzes highly efficient synthesis of quinoxalines under mild conditions, *Transition Met Chem*, 2012, **38**, 31–36.

¹H NMR and ¹³C NMR of quinoxalines

Figure S3: 1 H (500 MHz, CDCl₃) and 13 C (125 MHz, CDCl₃) NMR spectra of compound **3a**.

Figure S4: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3b**.

Figure S5: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound 3c.

Figure S6: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3d**.

Figure S7: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3e**.

Figure S8: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3f**.

Figure S9: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3g**.

Figure S10: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3h**.

Figure S11: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3i**.

Figure S12: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3j**.

Figure S13: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3k**.

Figure S14: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3I**.

Figure S15: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3m**.

Figure S16: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3n**.

Figure S17: 1 H (500 MHz, CDCl₃) and 13 C (125 MHz, CDCl₃) NMR spectra of compound **30**.

Figure S18: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3p**.

Figure S19: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3q.**

Figure S20: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3r**.

Figure S21: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3s**.

Figure S22: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3t**.

Figure S23: 1 H (500 MHz, CDCl₃) and 13 C (125 MHz, CDCl₃) NMR spectra of compound **3u**.

Figure S24: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound 3v.

Figure S25: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3w**.

Figure S26: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3x**.

Figure S27: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3y**.

Figure S28: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3z**.

Figure S29: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3aa**.

Figure S30: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ab**.

Figure S31: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ac**.

Figure S32: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ad**.

Figure S33: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ae**.

Figure S34: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3af**.

Figure S35: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ag**.

Figure S36: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ah**.

Figure S37: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ai.**

Figure S38: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3aj**.

Figure S39: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ak**.

Figure S40: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3al**.

Figure S41: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3am**.

Figure S42: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3an**.

Figure S43: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ao**.

Figure S44: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ap**.

Figure S45: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3aq**.

Figure S46: ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR spectra of compound **3ar**.