Electronic Supplementary Information (ESI†)

Mechanochemical ZIF-9 Formation: In Situ Analysis and Photocatalytic Enhancement Evaluation

Noelia Rodríguez-Sánchez^{1,2}, Carsten Prinz¹, Ralf Bienert¹, Menta Ballesteros^{2,3}, A. Rabdel Ruiz Salvador^{2,4}, Biswajit Bhattacharya^{1*}, Franziska Emmerling^{1,5*}

*Corresponding authors: BB <u>biswajit.bhattacharya@bam.de</u> and FE <u>franziska.emmerling@bam.de</u>

¹BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489, Berlin, Gemany.

²Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, Ctra. Utrera km. 1, 41013, Seville, Spain.

³Department of Molecular Biology and Biochemistry Engineering, Universidad Pablo de Olavide, Ctra. Utrera km. 1, 41013, Seville, Spain.

⁴ Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km. 1, 41013, Seville, Spain.

⁵Department of Chemistry, Humboldt-Universität of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.

Content

Study of adsorption kinetics models
Figure S.1 X-Ray Diffraction data for mechanochemical and solvothermal ZIF-9
Figure S.2. X-Ray Diffraction data of NH ₄ Cl concentration evaluation in mechanochemical ZIF- 94
Figure S.3. X-Ray diffraction data for solvent evaluation in mechanochemical ZIF-94
Figure S.4. X-Ray diffraction data for different shaker milling instruments
Figure S.5. X-Ray diffraction data in large scale of mechanochemical ZIF-95
Figure S.6. Adsorption isotherms for solvothermal synthetized and mechanochemical ZIF-96
Table S.1. BET data of solvothermal and mechanochemical ZIF-96
Figure S.7. EDS data for solvothermal and mechanochemical synthetized ZIF-97
Figure S.8. MB degradation by photolysis and combined action of light and H ₂ O ₂

Figure S.9. MB adsorption models for mechanochemical ZIF-9	9
Table S.2. Langmuir, Freundlich and Tempkin adsorption model parameters	10
Figure S.10. Zero-order and pseudo-second order kinetics models for ZIF-9	10
Figure S.11. Recyclability and first- order kinetic of mechanochemical synthesized ZIF-9	11

Study of adsorption kinetics models

Langmuir, Freundlich, and Temkin adsorption models were analyzed for mechanochemical ZIF-9 based on the dark period during photo-Fenton test. The calculations of these analyses were based on the equations [1-3] corresponding to Langmuir, Freundlich and Tempkin isotherms respectively:

$$\frac{C_e}{q_e} = \frac{1}{q_{max}K_L} + \frac{C_e}{q_{max}}$$
 Eq.1

$$\ln q_e = \frac{1}{n} \ln C_e + \ln K_F$$
 Eq.2

$$q_e = K_T \ln f + K_T \ln C_e$$
 Eq.3

Where q_e is the equilibrium adsorption capacity (mg g⁻¹), q_{max} is the maximum adsorption capacity (mg g⁻¹), and K_L and K_F are the Lagmuir and Freundlich constants, respectively. K_T and *f* (mg L⁻¹) are the Tempkin and binding constants, respectively.

Fig. S.1. X-Ray Diffraction Patterns for solvothermal synthetized ZIF-9 (black) and mechanochemical synthetized ZIF-9 (blue).

Fig.S.2. Evaluation of the concentration of NH₄Cl in the synthesis of mechanochemical ZIF-9.

Fig. S.3. Evaluation of the concentration of DMF in the synthesis of mechanochemical ZIF-9.

Fig. S.4. X-Ray diffraction patterns for mechanochemical ZIF-9 using a shaker mill with a vertical movement (light blue) and with horizontal movement (dark blue).

Fig. S.5. X-Ray diffraction patterns for 2.3 grams scale of mechanochemical ZIF-9.

Fig.S.6. Adsorption isotherms for solvothermal synthetized ZIF-9 (black) and mechanochemical synthetized ZIF-9 (blue).

Table S.1. Specific surface area (BET) analysis of solvothermal and mechanochemical ZIF-9.

Material	Specific surface	Uncertainty	С	Cor.	Measuring [p/p ₀]
	area (BET)	(BET)		Coeff.	
	[m²/g]	[m²/g]			
Solvothermal ZIF-9	274.06	± 0.0652	18839	0.9999	0.00108 - 0.00478
Mechanochemical ZIF-9	10.93	±0.0298	76.079	0.9999	0.05554 - 0.21977

Fig.S.7. EDS spectra for solvothermal synthetized ZIF-9 (a) and mechanochemical synthetized ZIF-9 (b).

Fig.S.8. Methylene blue degradation by influence of visible light (grey) and the combined action of visible light and H_2O_2 (black).

Fig. S.9. MB adsorption on mechanochemical synthesized ZIF-9 based on a) Langmuir, b) Freundlich and c) Tempkin isotherms.

Langmuir K _L (L mg ⁻¹)	q _e (mg g ⁻¹)	R ²	$ \begin{array}{c} \mbox{Freundlich} \\ \mbox{K}_{\rm F} [(mg \\ g^{-1}). (L \\ mg^{-1})^{1/n}] \end{array} $	n	R ²	$\begin{array}{c} \text{Tempkin} \\ K_T \left(L \\ mg^{-1} \right) \end{array}$	f	R ²
-2.213E+02	3.309E-04	0.9933	0.001648	-5.21921	0.9977	-92.842	1.05568	0.9999

Table S.2. Langmuir, Freundlich and Tempkin model parameters for mechanochemical synthetized ZIF-9.

Fig.S.10. Zero-order (a) and pseudo-second order (b) kinetics for solvothermal synthetized ZIF-9 (black) and mechanochemical synthetized ZIF-9 (blue)

Fig. S.11. Recyclability and first- order kinetic of mechanochemical synthesized ZIF-9 over three cycles.