Supporting Information

Received 00th January 20xx, Accepted 00th January 20xx

Multinary light absorbing semiconductor nanocrystals with diversified electronic and optical properties

DOI: 10.1039/x0xx00000x

Soubantika Palchoudhury,^{a,*} Benjamin T. Diroll,^b Panchapakesan Ganesh,^c Jessica Cobos,^d Sohini Sengupta,^a Jingsong Huang^{c,*}

Figure S1. PL characterization of CZASSe nanocrystals for 350 nm excitation. (a) $CuZn_2AlS_xSe_{4-x}$ compositions and (b) $CuZn_2InS_xSe_{4-x}$ compositions.

^a·Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio, USA *E-mail: spalchoudhury1@udayton.edu*Tel: +1- 937-229-3194
^b·Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois, USA
^c Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. *E-mail: huanaj3@ornl.gov*Tel: +1-865-576-3991
^d Mechanical Engineering, University of Texas at El Paso

Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [SEM and EDX analysis of the CZASSe nanocrystals, PL analysis of the CuZn₂AlSSe and CuZn₂InSSe nanocrystals, XRD analysis and Rietveld fit of the CZASSe nanocrystals, experimental bandgap and a table summarizing the bandgaps of CZASSe nanocrystals, and band structure and density of states of the CuZn₂AlSSe and CuZn₂InSSe nanocrystals]. See DOI: 10.1039/x0xx00000x

Figure S2. SEM and EDX characterization of CuZn₂AlS₄ nanocrystals.

Figure S3. SEM and EDX characterization of CuZn₂AlS₃Se nanocrystals.

Figure S5. SEM and EDX characterization of CuZn₂AlSSe₃ nanocrystals.

Figure S6. SEM and EDX characterization of CuZn₂AlSe₄ nanocrystals.

Figure S7. SEM and EDX characterization of $CuZn_2GaS_4$ nanocrystals.

Figure S8. SEM and EDX characterization of CuZn₂GaS₃Se nanocrystals.

Figure S9. SEM and EDX characterization of CuZn₂GaS₂Se₂ nanocrystals.

Figure S10. SEM and EDX characterization of CuZn₂GaSSe₃ nanocrystals.

Figure S11. SEM and EDX characterization of CuZn₂GaSe₄ nanocrystals.

Figure S12. SEM and EDX characterization of CuZn₂InS₄ nanocrystals.

Figure S14. SEM characterization of CuZn₂InS₂Se₂ nanocrystals.

Figure S15. SEM and EDX characterization of CuZn₂InSSe₃ nanocrystals.

Figure S16. SEM and EDX characterization of CuZn₂InSe₄ nanocrystals.

Table S1. Summary of direct experimental bandgaps of CZASSe nanocrystals								
Multinary nanocrystal composition	Eg_SCAN (eV)	Eg_HSE06 (eV)	Eg_experimental (eV)	% deviation w.r.t. SCAN	% deviation w.r.t. HSE06	ChemComm Eg_experimental (eV) ¹	Standard deviation	Crystallite size from Debye- Scherrer formula
CuZn ₂ AlS ₄	2.362	3.279	3.0	18.9	3.8	1.78	0.05	23.45
CuZn ₂ AlS ₃ Se	1.927	2.774	2.2	9.7	9.5			7.58
$CuZn_2AlS_2Se_2$	1.656	2.467	2.4	28.8	11.6			10.93
CuZn ₂ AlSSe ₃	1.522	2.342	2.5	36.8	19.8			9.56
CuZn ₂ AlSe ₄	1.520	2.369	2.3	31.0	11.1			12.90
CuZn ₂ GaS ₄	1.863	2.791	2.2	19.9	8.6	1.64	0.04	4.83
CuZn ₂ GaS ₃ Se	1.443	2.299	1.8	25.6	1.7			9.87
$CuZn_2GaS_2Se_2$	1.182	2.002	2.5	56.7	36.5			7.66
CuZn ₂ GaSSe ₃	1.052	1.880	1.8	46.6	18.2			11.50
CuZn ₂ GaSe ₄	1.044	1.903	1.8	46.6	16.5			13.17
CuZn ₂ InS ₄	1.214	2.116	2.8	56.2	35.4	1.42	0.03	3.51
CuZn ₂ InS ₃ Se	0.903	1.733	2.7	66.2	46.7			5.54
$CuZn_2InS_2Se_2$	0.723	1.513	3.0	75.6	58.5			4.80
CuZn ₂ InSSe ₃	0.640	1.436	2.4	72.6	51.3			12.68
CuZn ₂ InSe ₄	0.650	1.473	2.4	72.3	50.0			18.28

Figure S17. Plot showing variation of experimental bandgap of $CuZn_2AS_xSe_{4-x}$ nanocrystal compositions with varying Se content of the nanocrystals.

Figure S18. XRD characterization of the different wurtzite phase CuZn₂AlS_xSe_{4-x} nanocrystal compositions.

Figure S19. XRD characterization of the remaining wurtzite phase CuZn₂GaS_xSe_{4-x} nanocrystal compositions.

Figure S20. XRD characterization of different wurtzite phase CuZn₂InS_xSe_{4-x} nanocrystal compositions.

COMMUNICATION

Figure S21. Rietveld fit of different CZASSe nanocrystal compositions.

Figure S22. Unit cell of different CuZn₂GaS_xSe_{4-x} compositions used for electronic structure calculations.

Figure S23. Electronic structures of different $CuZn_2AlS_xSe_{4-x}$ compositions calculated using HSE06 hybrid functionals along with virtual crystal approximation. (a) $CuZn_2AlS_4$, (b) $CuZn_2AlS_3Se_4$, (c) $CuZn_2AlS_2Se_2$, (d) $CuZn_2AlSSe_3$, and (e) $CuZn_2AlSe_4$.

Figure S24. Electronic structures of different $CuZn_2GaS_xSe_{4-x}$ compositions calculated using HSE06 hybrid functionals along with virtual crystal approximation. (a) $CuZn_2GaS_3Se_3$, (b) $CuZn_2GaS_2Se_2$, and (c) $CuZn_2GaSSe_3$.

Figure S25. Electronic structures of different $CuZn_2InS_xSe_{4-x}$ compositions calculated using HSE06 hybrid functionals along with virtual crystal approximation. (a) $CuZn_2InS_4$, (b) $CuZn_2InS_3Se$, (c) $CuZn_2InS_2Se_2$, (d) $CuZn_2InSSe_3$, and (e) $CuZn_2InSe_4$.

Figure S26. UV-vis and Tauc plots showing experimental bandgaps of $CuZn_2AlS_xSe_{4-x}$ nanocrystals. (a-b) $CuZn_2AlS_4$, (c-d) $CuZn_2AlS_3Se$, (e-f) $CuZn_2AlSe_3$, and (g-h) $CuZn_2AlSe_4$.

Figure S27. UV-vis and Tauc plots showing experimental bandgaps of $CuZn_2GaS_xSe_{4-x}$ nanocrystals. (a-b) $CuZn_2GaS_4$, (c-d) $CuZn_2GaS_3Se_4$, (e-f) $CuZn_2GaS_2Se_2$, (g-h) $CuZn_2GaSe_3$, and (i-j) $CuZn_2GaSe_4$.

Figure S28. UV-vis and Tauc plots showing experimental bandgaps of $CuZn_2InS_xSe_{4-x}$ nanocrystals. (a-b) $CuZn_2InS_4$, (c-d) $CuZn_2InS_3Se$, (e-f) $CuZn_2InS_2Se_2$, (g-h) $CuZn_2InSSe_3$, and (i-j) $CuZn_2InSe_4$.

References

1 A. Ghosh, S. Palchoudhury, T. Rajalingam, Z. Zhou, N. Naghibolashrafi, K. Ramasamy and A. Gupta, *Chem. Commun.*, 2016, **52**, 264.

- 2 G. Kresse, J. Non Cryst. Solids., 1995, 193, 222.
- 3 G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54, 11169.
- 4 P.-E. Blochl, Phys. Rev. B, 1994, 50, 17953.
- 5 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758.
- 6 J. Sun, A. Ruzsinszky and J.-P. Perdew, Phys. Rev. Lett., 2015, 115, 036402.
- 7 L. Bellaiche and D. Vanderbilt, Phys. Rev. B, 2000, 61, 7877.
- 8 J. Heyd, J.-E. Peralta, G.-E. Scuseria and R.-L. Martin, J. Chem. Phys., 2005, 123, 174101.
- 9 W. Setyawan and S. Curtarolo, Comput. Mater. Sci., 2010, 49, 299.