Improved electrochemical performance of defect induced supercapacitor electrodes based on MnS incorporated MnO₂ nanorod

Mizanur Rahaman¹, Md. Roxy Islam², Muhammad Rakibul Islam^{1*}

¹Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh ²Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh *Corresponding Author: rakibul@phy.but.ac.bd

Fig. ST 1. X-ray diffraction pattern of MnS nanoparticles

Fig. ST 2. High resolution Mn 2p spectra of MnO₂ nanorods

Fig. ST 3. GCD curve of (a) MnO_2/MnS (5wt%), (b) MnO_2/MnS (6wt%) and (c) MnS at three electrode system.

The capacitive performance of MnO_2/MnS (5wt%), MnO_2/MnS (6wt%) and MnS are measured in three electrode system by using the formula,

$$C_s = \frac{I \times \Delta t}{\Delta V \times m}$$

The specific capacitance of MnO_2/MnS (5wt%, 6wt%) and MnS is 268 Fg⁻¹, 114Fg⁻¹ and 397 Fg⁻¹.

Fig. ST 4. (a) Cyclic voltammetry curve and (b) Galvanostatic charging-discharging curve of MnO_2/MnS (4wt%) nanocomposite at two electrode system.

The specific capacitance, energy density and power density of two electrode symmetric system by using the formula,

$$C_s = \frac{4I \times \Delta t}{\Delta V \times m}$$

$$E_s = \frac{Cs(\Delta v)2 \times 1000}{8 \times 3600}$$

 $P_{s} = \frac{E_{s} \times 3600}{\Delta T}$