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Selection of the optimal particle size range for which the NTA data best 
agrees with the results of electron microscopy
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Equation y = a + b*x
Plot B
Weight No Weighting
Intercept 27,43897 ± 2,900
Slope 0,56981 ± 0,0320
Residual Sum of Squar 144,21413
Pearson's r 0,99062
R-Square (COD) 0,98133
Adj. R-Square 0,97822

Figure S1. The position of the dominant peak in the dependence of particle concentration on 
the effective hydrodynamic diameter Dh (Nanoparticle Tracking Analysis, NTA) for samples 
of commercially available (Sigma-Aldrich) citrate stabilized gold nanoparticles. Suspensions 
of nanoparticles in water were studied in the range of metal core sizes from 10 to 200 nm. For 
most particles, one dominant peak was observed; several peaks were observed for particles 
larger than 80 nm in diameter. Gold nanoparticles with a diameter of 50 nm, whose effective 
hydrodynamic size best matches TEM data, were selected for the study. For smaller sizes, the 
NTA method shows overestimated values, and for larger sizes, slightly underestimated values.
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Deconvolution of the extinction spectra of citrate stabilized gold 
nanoparticles with a diameter of 50 nm into elementary bands with a 
Lorentz profile in solutions of 3% HCl and 3% HAHP at different times t

t, min 3% HCl, 0.36 M 3% HAHP (HCl&H2O2)
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 Fit Peak 1
 Fit Peak 2
 Fit Peak 3
 Cumulative Fit Peak

Model Lorentz
Equation y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))
Plot Peak1(I) Peak2(I) Peak3(I)
y0 0 ± 0 0 ± 0 0 ± 0
xc 18669,97602 ± 4,4203 14984,35317 ± 124,72769 10386,6768 ± 13,45035
w 2648,17548 ± 16,19203 1001,5291 ± 400,09385 220,61172 ± 38,41257
A 13795,48333 ± 63,83088 81,36189 ± 26,70185 53,25647 ± 6,58239
Reduced Chi-Sqr 0.00282
R-Square (COD) 0.99653
Adj. R-Square 0.99647
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Plot Peak1(I) Peak2(I) Peak3(I)
y0 0 ± 0 0 ± 0 0 ± 0
xc 18675,79091 ± 4,02 15221,47944 ± 39,34 10394,29936 ± 18,9
w 2736,15327 ± 17,23 1679,2772 ± 132,764 521,68577 ± 57,119
A 14506,8059 ± 74,28 542,34397 ± 40,8851 122,38533 ± 9,5711
Reduced Chi-S 0.0022
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Model Lorentz
Equation y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))
Plot Peak1(I) Peak2(I) Peak3(I)
y0 0 ± 0 0 ± 0 0 ± 0
xc 18679,99353 ± 4,95527 14818,66505 ± 33,48247 10390,22158 ± 6,55376
w 2771,52052 ± 21,32844 2334,22829 ± 108,22146 251,55359 ± 18,90579
A 13737,21607 ± 87,96307 1224,89698 ± 55,20916 133,68227 ± 7,2175
Reduced Chi-Sqr 0,00284
R-Square (COD) 0,99602
Adj. R-Square 0,99596
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Model Lorentz
Equation y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))
Plot Peak1(Cumulative Fit Peak) Peak2(Cumulative Fit Peak Peak3(Cumulative Fit Peak)
y0 0 ± 0 0 ± 0 0 ± 0
xc 18720 ± 1,21283E-14 14886,7075 ± 8,24396E-1 10422,00009 ± 2,95836E-1
w 2873,20063 ± 5,56378E-14 3090,26981 ± 2,62275E-1 243,21575 ± 8,66707E-14
A 13864,89282 ± 2,61792E-1 2722,63095 ± 2,26987E-1 80,49083 ± 2,12745E-14
Reduced Chi-Sqr 4,5774E-32
R-Square (COD) 1
Adj. R-Square 1
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Figure S2. Deconvolution of the extinction spectra of citrate stabilized gold nanoparticles with 
a diameter of 50 into elementary bands with a Lorentz profile in solutions of 3% HCl and 3% 
HAHP at different times t
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Correlation between the intensity of the LSPR band of single particles and 
the “agglomerate” / “single particle” ratio
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Equation y = a + b*x
Plot B
Weight No Weighting
Intercept 1,00644 ± 0,009
Slope -0,25553 ± 0,01
Residual Sum of Squ 0,00342
Pearson's r -0,98201
R-Square (COD) 0,96435
Adj. R-Square 0,96079

Figure S3. Correlation between the intensity of the LSPR band of single particles (Figure 3a) 
and the “agglomerate” / “single particle” ratio (Figure 3b) for t < 60 min in solutions of 3% M 
HCl and 3% HAHP. The values of the “agglomerate” / “single particle” ratio is calculated as 
the ratio of the areas under the Lorentz profiles of the corresponding bands in Figure S3.

Isosbestic point

In line with IUPAC Compendium of Chemical Terminology 
(https://goldbook.iupac.org/terms/view/I03310): “The observation of isosbestic points only 
indicates that the stoichiometry of the reaction remains unchanged during the chemical reaction 
or the physical change of the sample, and that no secondary reactions occur during the 
considered time range”. This conclusion follows directly from the definition of the isosbestic 
point as “Wavelength, wavenumber or frequency at which the total absorbance of a sample does 
not change during a chemical reaction or a physical change of the sample” ('isosbestic point' in 
IUPAC Compendium of Chemical Terminology, 3rd ed. International Union of Pure and 
Applied Chemistry; 2006. Online version 3.0.1, 2019. 
https://doi.org/10.1351/goldbook.I03310). 

https://goldbook.iupac.org/terms/view/I03310
https://doi.org/10.1351/goldbook.I03310
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The mathematical formulation of chemical equilibria in the presence of an isosbestic 
point is quite well described in the literature, in particular the review and the literature cited in 
it (Sokaina S. Hemdan, Asma M. Al Jebaly, & Fatma K. Ali “Importance of isosbestic point in 
spectroscopy: a review”, DOI 10.37376/1571-000-062-004). Despite the fact that the 
mathematical formulation of the conditions for the appearance of an isosbestic point allows the 
simultaneous existence of several absorbing products in solution, many authors note the 
extremely low probability of such a situation. This is due both to fairly specific conditions on 
the relationship between these products and to the uniformity of the thermodynamic conditions 
for their occurrence. This question is discussed by J.R. Morrey drawing attention to the fact that 
the thermodynamic parameters of all these reactions must be close to each other (“Isosbestic 
Points in Absorbance Spectra”, J. Phys. Chem, 67(7) pp.1569-1569 (1963)). Similar discussion 
from T. Nowicka-Jankowska presented in “Some properties of isosbestic points”, Journal of 
Inorganic and Nuclear Chemistry, Volume 33, Issue 7, 1971, 2043-2050, 
https://doi.org/10.1016/0022-1902(71)80566-3.

This means that the set of reaction products (i.e., the composition of the aggregates) 
remains unchanged during the time interval when the isosbestic point is observed (at the same 
position). Keeping in mind that this work considers highly dilute solutions, the formation of 
dimers and, possibly, “ring-shaped” trimers is most likely. The conditions under which an 
isosbestic point may appear in the reaction of formation of both a dimer and a trimer from single 
particles (i.e., with three absorbing objects in solution) are considered by R.G. Mayer and R. S. 
Drago in work “Interpretation of isosbestic points”, Inorg. Chem. 1976, 15, 8, 2010–2011.

The NTA data are in agreement with this assumption, since the effective hydrodynamic 
diameter of the observed structures does not exceed a size of about 150-200 nm (Figure 4a). 
The “ring-shaped” trimers also agree with theoretical calculations of their UV-VIS spectra: the 
absorption spectrum of such a cluster of nanoparticles is less shifted to longer wavelengths than 
a linear aggregate of the same composition (Zámbó, D., Deák, A. “Optical Simulations of Self-
assembly Relevant Gold Aggregates: A Comparative Study”, Periodica Polytechnica Chemical 
Engineering, 60(4), pp. 244–251, 2016. https://doi.org/10.3311/PPch.9101).

Debye screening length estimation for the solutions under consideration 

When considering the kinetic stability of colloidal solutions, the classical theory of 
DVLO focuses on electrostatic interactions that determine the ability of particles to approach 
each other. Formation of the electrical double layer (EDL) originates from the fact that capped 
nanoparticle electrically attracts counter ions from an ionic solution, causing exponential decay 
of electrical potential with distance. Intuitively, increasing the concentration of highly mobile 
ions in solution (increasing ionic strength) will reduce the thickness of the EDL around the 
nanoparticle due to local electrostatic interactions at the outer boundary of the double layer. In 
order to numerically characterize the decrease in the charge density and also the electric 
potential of an ion atmosphere with increasing distance from the surface, the concept of the 
Debye length lD, - the characteristic length of the electrolytic system at which those values 
reduce by a factor “e”, - is introduced. Obviously, it is extremely difficult to accurately calculate 
the value of lD since for this it is necessary to solve the Poisson-Boltzmann equation constitutes 
a nonlinear differential equation for the electrostatic potential in a specific geometry for a 
particular problem (see, for example, H. Saboorian-Jooybari, Z. Chen “Calculation of re-
defined electrical double layer thickness in symmetrical-electrolyte solutions”, Results in 
Physics 15 (2019) 102501). However, for small potentials in relatively dilute electrolytes Debye 
and Hückel derived a linearized version of the Poisson-Boltzmann equation by Taylor 
expansion of the exponential terms, neglecting contributions higher than first (P. Debye and E. 
Hückel, ``Zur Theorie der Elekrolyte: I. Gefrierpunktserniedrigung und verwandte 
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Erscheinungen.,'' Physikalische Zeitschrift 24 (1923), N9, pp. 185-206). This made it possible 
to obtain an analytical expression for estimating the value of lD:

                                                      (S1)
𝑙𝐷= (𝜀0 ∙ 𝜀𝑠𝑜𝑙 ∙ 𝑘𝐵 ∙ 𝑇2 ∙ 𝑞2 ∙ 𝐼𝑠𝑜𝑙

)1/2
ε0 is the permittivity of free space, εsol is the dielectric constant of solution, kB is the Boltzmann 
constant, q is the elementary charge (the charge of an electron), T is the temperature.

The Debye length lD open the way to estimate the double layer thickness. Increasing the 
concentration or valence of the counterions compresses the double layer and raises the potential 
gradient. Indeed, as follows directly from the equation S1, the Debye length is inversely 
proportional to the square root of the ionic strength Isol. The ionic strength of a solution is a 
measure of the concentration of ions in the solution (i.e. the concentration of electrical charge, 
IUPAC Compendium of Chemical Terminology, 3rd ed. International Union of Pure and 
Applied Chemistry; 2006. Online version 3.0.1, 2019. 
https://doi.org/10.1351/goldbook.I03180). The ionic compounds, dissociate into ions, when 
they are dissolved in water. So, a symmetric monovalent electrolyte (1:1 electrolyte) has the 
same molarity in solution as before it was dissolved.

At room temperature (20 °C) in water (εsol is c.a. 80) the equation (S1) transforms into 
the well-known relation (Israelachvili, J. (1985) Intermolecular and Surface Forces. Academic 
Press. ISBN 0-12-375181-0): 

                                                                       (S2)
𝑙𝐷=

0.304
𝐼𝑠𝑜𝑙(𝑀)

where lD is expressed in nanometers (nm) and Isol(M) is the ionic strength expressed in molar 
(mol/L).

Solutions of hydrochloric acid used in this work (a symmetric monovalent electrolyte) 
in a molar concentration of 0.36 M, have, according to equation (S2), a characteristic value of 
the Debye length c.a. 0.5 nm.

It is also interesting to estimate the number of chloride ions (c.a. 267 pm in diameter) 
in the area of contact of two nanoparticles at a given concentration of hydrochloric acid (0.36 
M). With a distance between nanoparticles of 1 nm and a contact area diameter of 5, 10 and 15 
nm, we obtain on average c.a. 4, 17 and 38 Cl- ions, respectively. Such an average amount of 
complexing agent in the contact area can ensure the occurrence of a corrosion reaction 
(approximately one ion per 5 nm2 of contact area). At the same time, direct experimental 
determination of such quantities of reacting substances still remains impossible in the confined 
space between nanoparticles.
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Schematic diagram of automatic installation fir the fixed dose injection during the 
analytical workflow of NTA measurements

Figure S4. Sample handling during the analytical workflow of NTA measurements. Schematic 
diagram of automatic installation is illustrating the realization of fixed dose injection. 

The measurement protocol includes several stages. (1) Initially, the entire system 
including the sample loop is washed with a large amount of purified water (carrier/baseline 
solvent through the sample injection and washing line) at a high flow rate (up to 2 ml/min) until 
the NTA camera no longer registers the presence of particles in the visible region of the flow 
cuvette. (2) Then 1.4 ml of sample is pumped into the Sample loop (sample loading line, flow 
rate 1 ml/min). Sample loop volume is 1 ml and the dead volume (volume of tubes from sample 
loop till the position of flow cell under objective) is c.a. 0.3 ml. (3) After setting the NTA 
software, the specified volume of sample is injected into the measuring cell (0.5-0.6 ml) and 
recorded without pumping. (4) The working solution with the sample is additionally pumped 
by 0.1 ml and another recording is made without pumping. 5 records each 60 second long were 
recorded (default NTA procedure). (5) The entire system (including the sample) loop is flushed 
with a large amount of purified water at a high flow rate (up to 2 ml/min) until the NTA camera 
no longer detects the presence of particles in the solution (corresponds to particle number 
concentration below 106 NPs/ml). Inline filter for washing pump is 200 nm Anotop. 

The volume of the Sample loop is chosen so that it is possible to replace the sample in 
the measuring cell several times (step (4)) if necessary. However, it is necessary to take into 
account the possibility of adsorption of part of the sample components on the surface of the 
supply Teflon tubes. This system allows standardization of the sample delivery procedure, 
minimizing the time the sample remains in the supply system and ensuring efficient cleaning 
of the entire sample supply system.
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