Supporting information

Precise Synthesis of Copper Selenide Nanowires with Tailored Cu Vacancies through Photo-Induced Reduction for Thermoelectric applications

Shunya Sakane^{a,*}, Tatsuki Miura^b, Kazuki Munakata^b, Yusuke Morikawa^b, Shunichiro Miwa^b, Riku Yamanaka^c, Toshiki, Sugai^c, Akito Ayukawa^a, Haruhiko Udono^a, Hideki Tanaka^{b,*}

a. Graduate School of Science and Engineering, Ibaraki University, 4-12-1, Nakanarusawa-cho, Hitachi, Ibaraki, Japan

b. Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, Japan.

c. Faculty of Science, Toho University, 2-2-1, Miyama, Funabashi-shi, Chiba, Japan

Supporting Figures

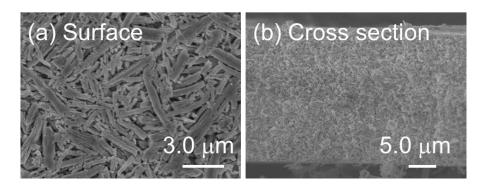


Fig. S1 (a) Surface and (b) cross sectional SEM images of Cu_{2.00}Se NW films after pressing.

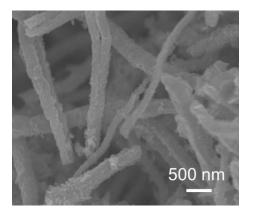


Fig. S2 A SEM image of Cu_{2.00}Se NW with high magnification.

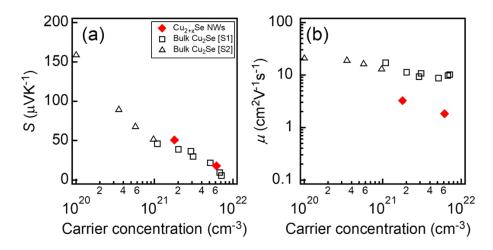


Fig. S3 (a) Seebeck coefficient (*S*) and (b) Hall mobility (μ) as a function of carrier concentration of Cu_{2+x}Se NWs and bulk Cu₂Se [S1, S2].

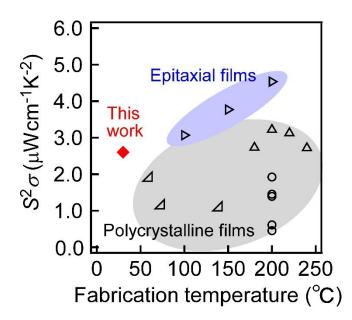


Fig. S4 $S^2 \sigma$ of Cu_{2.00}Se NWs (this work) as a function of the fabrication temperature, where the data of polycrystalline films [S3-S5] and epitaxial films [S6] were plotted.

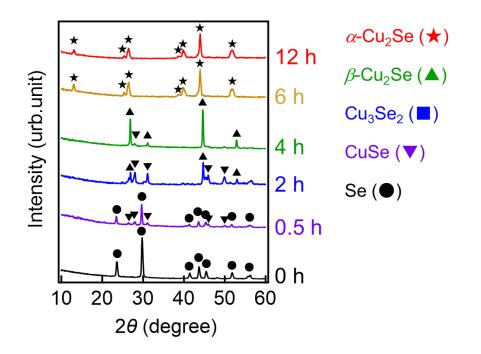
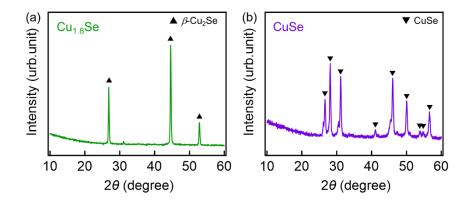
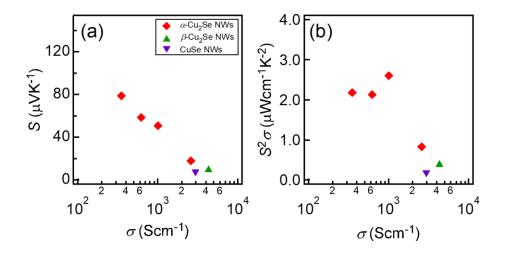




Fig. S5 XRD patterns of the samples synthesized by light irradiation for 0-12 hours.

Fig. S6 XRD patterns of (a) Cu_{1.8}Se NWs and (b) CuSe NWs. Cu_{1.8}Se (CuSe) NWs were synthesized with used Cu/Se ratio of 1.8 (1.0) by light irradiation for 12 (30) hours.

Fig. S7 (a) *S* and (b) $S^2 \sigma$ as a function of σ of α -Cu_{2+x}Se NWs, β -Cu_{1.8}Se NWs and CuSe NWs.

References

(S1) Yu, J.; Zhao, K.; Qiu, P.; Shi, X.; Chen, L. Thermoelectric Properties of Copper-Deficient $Cu_{2-x}Se (0.05 \le x \le 0.25)$ Binary Compounds. *Ceram. Int.* **2017**, *43*, 11142-11148.

(S2) Tak, J. Y.; Nam, W. H.; Lee, C.; Kim, S.; Lim, Y. S.; Ko, K.; Lee, S.; Seo, W. S.; Cho, H. K.; Shim, J. H.; and Park, C. H. Ultralow Lattice Thermal Conductivity and Significantly Enhanced Near-Room-Temperature Thermoelectric Figure of Merit in α -Cu₂Se through Suppressed Cu Vacancy Formation by Overstoichiometric Cu Addition. *Chem. Mater.* **2018**, 30, 3276-3284.

(S3) Li, Y.; Zhong, Y.; Zhang, D.; Niu, J.; Nisar, M.; Wei, M.; Liang, G.; Fan, P.; and Zheng, Z. Enhanced Thermoelectric Properties of Cu₂Se Flexible Thin Films by Optimizing Growth Temperature and Elemental Composition. *ACS Appl. Energy Mater.* **2022**, **5**, 13964-13970.

(S4) Fan, P.; Huang, X.; Chen, T.; Li, F.; Chen, Y.; Jabar, B.; Chen, S.; Ma, H.; Liang, G.; Luo,
J.; Zhang, X.; and Zheng, Z. α-Cu₂Se Thermoelectric Thin Films Prepared by Copper Sputtering
into Selenium Precursor Layers. *Chem. Eng. J.* 2021, *410*, 128444.

(S5) Yang, L.; Wei, J.; Qin, Y.; Wei, L.; Song, P.; Zhang, M.; Yang, F.; and Wang, X.
Thermoelectric Properties of Cu₂Se Nano-Thin Film by Magnetron Sputtering. *Materials* 2021, 14, 2075.

(S6) Wang, A.; Xue, Y.; Wang, J.; Yang, X.; Wang, J.; Li, Z.; Wang, S. High Thermoelectric Performance of Cu₂Se-Based Thin Films with Adjustable Element Ratios by Pulsed Laser Deposition. *Mater. Today Energy* **2022**, *24*, 100929.