Supporting information for:

Revealing the Synergistic Effect of Ni Single Atoms and Adjacent 3d metal Doped Ni Nanoparticles in Electrocatalytic CO₂ Reduction

Yingjie Liu,^{a,†} Zhaohui Wu,^{a,†} Sha Bai,^a Tianyang Shen,^a Qian Li,^a Guihao Liu,^a Xiaoliang Sun,^a Yihang Hu,^a Ziheng Song,^a Jinfeng Chu,^{a,*} and Yu-Fei Song ^{a,b*}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China.
^bQuzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000 P. R. China.

[†]These authors contributed equally to this work.

List of Contents:

Experimental Section

Figure S1. XRD patterns of NiMAl-LDH.

Figure S2. XRD patterns of Ni_{1+NPs}M@NCNTs.

Figure S3. Raman spectra of Ni_{1+NPs}M@NCNT.

Figure S4. (a-f) SEM images of Ni_{1+NPs}M@NCNT (M=Mn, Fe, Co, Ni, Cu, Zn).

Figure S5. TEM images of (a) Ni_{1+NPs}Mn@NCNT and (b) Ni_{1+NPs}Fe@NCNT.

Figure S6. EDX elemental mapping image of N in the Ni_{1+NPs}Cu@NCNT.

Figure S7. (a) STEM image of $Ni_{1+NPs}Cu@NCNT$ and (b) the corresponding STEM-EDX line scanning image.

Figure S8. EXAFS in k space of Ni_{1+NPs}@NCNT, Ni_{1+NPs}Cu@NCNT and Ni foil.

Figure S9. Cu K-edge XANES spectra of Ni1+NPsCu@NCNT and Cu foil

Figure S10. XPS of $Ni_{1+NPs}@NCNT$, $Ni_{1+NPs}Mn@NCNT$, $Ni_{1+NPs}Fe@NCNT$ and $Ni_{1+NPs}Cu@NCNT$.

Figure S11. (a) N 1s and (b) Ni 2p XPS spectra of $Ni_{1+NPs}@NCNT$, $Ni_{1+NPs}Mn@NCNT$, $Ni_{1+NPs}Fe@NCNT$ and $Ni_{1+NPs}Cu@NCNT$.

Table S1. EXAFS fitting results of Ni_{1+NPs}Cu@NCNT, Ni_{1+NPs}@NCNT and Ni foil.

Figure S12. (a-f) LSV curves of Ni_{1+NPs}M@NCNT under Ar (black) and CO₂ (colored) atmosphere.

Figure S13. Characterization for the liquid product of Ni_{1+NPs}M@NCNT after the full-potential-

CO₂RR period by ¹H nuclear magnetic resonance spectroscopy.

Figure S14. CO₂RR performance of Ni_{1+NPs}M@NCNT. (a) FE_{CO} of Ni_{1+NPs}M@NCNT (M=Mn, Fe,

Co, Ni, Cu, Zn); (b) contour plots of J_{CO} under different potential.

Table S2. FE_{CO} of $Ni_{1+NPs}M@NCNT$ under different potentials.

Figure S15. Typical cyclic voltammetry curves for (a) Ni_{1+NPs}@NCNT, (b) Ni_{1+NPs}Mn@NCNT, (c)

Ni_{1+NPs}Fe@NCNT and (d) Ni_{1+NPs}Cu@NCNT under different scan rates.

Figure S16. (a) XRD patterns of $Ni_{1+NPs}Cu@NCNT$ before (black) and after (red) CO₂RR; (b) TEM image of the $Ni_{1+NPs}Cu@NCNT$ after CO₂RR.

Figure S17. DFT models for Ni_{1+NPs}@NCNT and Ni_{1+NPs}Cu@NCNT.

Figure S18. CO_2RR performance of Ni_{NPs}@NCNT. (a) current density and (b) FE_{CO} and FE_{H2} under different potentials.

Figure S19. (a) Schematic illustration and (b) photograph of the flow cells.

Figure S20. (a) TCD1 Chromatogram of CO; and (b) TCD2 Chromatogram of H_2 .

Table S3. Comparison of CO₂RR performance displayed by our catalyst and other reported works.

Experimental Section

Materials: NiCl₂·6H₂O, AlCl₃·6H₂O, FeCl₃·6H₂O, MnCl₂·4H₂O, CoCl₂·6H₂O, CuCl₂·2H₂O, ZnCl₂, NaOH, KHCO₃, melamine, HCl were purchased from Sigma-Aldrich Co. and were used without any further purification. Deionized water was used in all the experimental processes. Nafion 211 membrane was purchased from Dupont. Carbon dioxide (99.999%) was purchased at Beijing Beiwen Gas Comp.

Synthesis of NiMAI-LDH (X=Ni, Mn, Fe, Co, Cu, Zn): 47.5mmol NiCl₂· $6H_2O$, 25mmol AlCl₃· $6H_2O$ and 2.5mmol chloride of metal X were dispersed in 35 mL deionized water as solution A. NaOH and Na₂CO₃ were dispersed in another 50mL deionized water and added dropwise into solution A under 80°C. The obtained mixture was then stirred under 80°C for 12h and washed by deionized water till pH=7. The drying process finally gave rise to NiMAI-LDH.

Synthesis of Ni_{1+NPs}M@NCNT (M= Ni, Mn, Fe, Co, Cu, Zn): 3g melamine and 50mg NiMA1-LDH were milled together to get well-mixed powder, which was then calcined in a tubular furnace under N₂ atmosphere at 650°C for 3h. The calcined product was then stirred in 3 mol L⁻¹ HCl for 24h to remove the exposed nanoparticles and impurities. The sample was then washed by deionized water and dried.

Characterization: XRD patterns were collected by powder X-ray diffraction (XRD) on Bruker D8 diffractometer with Cu-K α radiation (λ =1.5405 Å). Scanning electron microscopy (SEM) images were obtained utilizing a Zeiss Supra55. High-resolution transmission electron microscopy (HRTEM) images were performed on a FEI Talos F200x. Ni and Cu K-edge X-ray absorption fine structure (XAFS) measurements were performed at the 1W1B beamline of the Beijing Synchrotron Radiation Facility. Raman spectroscopy was performed at a Jobin-Yvon LabRam HR800 microscope. XPS spectra was calibrated against C 1s at 284.8 eV. The gas and liquid products were analyzed using Gas chromatography-mass spectrometry (GC-MS, QP2020 equipped with Micropacked column) and NMR (AVANCE III HD 400), respectively.

Electrochemical measurements: The measurements were taken in a H-type cell connected to an electrochemical station (CHI660A). Pt plate was chosen as the counter

electrode and the Ag/AgCl electrode served as reference electrode. The data was converted to those against the reversible hydrogen electrode (RHE) before analysis. For the working electrode, a typical procedure is to disperse 5mg sample and 10 μ L Nafion solution in 1mL ethanol solution. Afterwards, 200 μ L mixture was taken and loaded on the carbon fiber paper with the size of 1*2 cm² in an area of 1*1 cm². LSV test, CV test and the faradaic efficiency analysis were taken in 0.25M KHCO₃ after injection of CO₂ gas for 30 minutes, which remains at the flow rate of 20 mL/min during the entire catalytic period.

Faradic efficiency calculation: Faradic efficiency was calculated by the equation:

$$FE = \frac{n \times Z \times F}{Q} \times 100\%$$

n is the moles of the product; F is the Faradaic constant (96485.33289 C mol⁻¹); Z: the number of transferred electrons ($Z_{CO}=Z_{H2}=2$); Q is the total charge calculated during CO₂RR.

$$n = \frac{P_0 \times v \times V}{R \times T}$$

 P_0 is the standard atmospheric pressure (101.325 kPa); v is the gas flow rate (20 mL/min); V is the volume concentration of the calculated product in the outlet gas from the catalytic system; T is the reaction temperature (298 K) and R is the ideal gas constant (8.314 J mol⁻¹ K⁻¹).

CO₂ electrolysis in flow cells: CO₂RR was taken in a flow cell equipped with gas diffusion electrodes (GDE), where Ag/AgCl electrode served as reference electrode. The catalyst ink was prepared in the same way and loaded on the carbon fiber paper with the size of 1×1 cm². KOH was chosen as the catholyte and anolyte, which were cycled at a flow rate of 14 mL min⁻¹ by using a peristaltic pump.CO₂ gas flow was delivered into the gas chamber at 14 sccm and collected for GC analysis.

Computational details

All spin-polarized DFT calculations were performed using the QUICKSTEP module in the CP2K package (version 2023.1)¹. The exchange-correlation potential in the single-electron Kohn-Sham equation was described by generalized gradient

approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional². Wavefunctions were expanded in molecularly optimized (MOLOPT) double ζ -valence polarized basis set³ with an auxiliary plane-wave basis set with a cutoff energy of 410 Ry. Core electrons were modeled by scalar relativistic norm-conserving Goedecker-Teter-Hutter (GTH) pseudopotentials⁴ with 18, 11, 15, 16, 4, 5, 6, and 1 valence electrons for Ni, Cu, Mn, Fe, C, N, O, and H, respectively. Grimme's D3 method with Becke-Johnson (B-J) damping ^{5, 6} was added to study the impact of van der Waals interaction. The Monkhorst-Pack gamma centered $3\times3\times1$ k point mesh was used for Brillouin zone sampling during geometry optimization process and self-consistent field (SCF) interaction was carried out with a conventional diagonalized method.

The density of state (DOS) was analyzed by Multiwfn package⁷ with the formed molden file in single point calculation. The projected DOS (pDOS) was calculated with the C-Squared Population Analysis (SCPA) method⁸ and the Gaussian function was selected to be the broadening function.

Figure S1. XRD patterns of NiMAl-LDH.

Figure S2. XRD patterns of $Ni_{1+NPs}M@NCNTs$.

Figure S3. Raman spectra of $Ni_{1+NPs}M@NCNT$.

Figure S4. (a-f) SEM images of Ni_{1+NPs}M@NCNT (M=Mn, Fe, Co, Ni, Cu, Zn).

Figure S5. TEM images of (a) $Ni_{1+NPs}Mn@NCNT$ and (b) $Ni_{1+NPs}Fe@NCNT$.

Figure S6. EDX elemental mapping image of N in the $Ni_{1+NPs}Cu@NCNT.$

Figure S7. (a) STEM image of $\rm Ni_{1+NPs}Cu@NCNT$ and (b) the corresponding STEM-EDX line scanning image.

Figure S8. EXAFS in k space of $Ni_{1+NPs}@NCNT$, $Ni_{1+NPs}Cu@NCNT$ and Ni foil.

Figure S9. Cu K-edge XANES spectra of $Ni_{1+NPs}Cu@NCNT$ and Cu foil

Figure S11. (a) N 1s and (b) Ni 2p XPS spectra of Ni_{1+NPs}@NCNT, Ni_{1+NPs}Mn@NCNT, Ni_{1+NPs}Fe@NCNT and Ni_{1+NPs}Cu@NCNT.

Table S1. EXAFS fitting results of $Ni_{1+NPs}Cu@NCNT$, $Ni_{1+NPs}@NCNT$ and Ni foil.

Sample	shell	C.N.	R (Å)	$\Delta \sigma^2 (/10^{-3} \text{\AA}^2)$	$\Delta E_0(eV)$	R factors
Ni-foil	Ni-Ni	12	2.48	5.83	-5.85	0.0010
Ni _{1+NPs} @NCNT	Ni-N	3.96	1.81	14.00	-7.00	0.0027
	Ni-Ni	2.15	2.49	5.06	-4.77	
Ni _{1+NPs} Cu@NCNT	Ni-N	3.91	1.81	19.00	-5.00	0.0195
	Ni-Ni	0.88	2.49	3.36	-4.85	

Figure S12. (a-f) LSV curves of $Ni_{1+NPs}M@NCNT$ under Ar (black) and CO_2 (colored) atmosphere.

Figure S13. Characterization for the liquid product of $Ni_{1+NPs}M@NCNT$ after the full-potential-CO₂RR period by ¹H nuclear magnetic resonance spectroscopy.

Figure S14. CO₂RR performance of Ni_{1+NPs}M@NCNT. (a) FE_{CO} of Ni_{1+NPs}M@NCNT (M=Mn, Fe, Co, Ni, Cu, Zn); (b) contour plots of J_{CO} under different potential.

Potential (V vs. RHE)	Ni _{1+NPs} @NCNT	Ni _{1+NPs} Mn@NCNT	Ni _{1+NPs} Fe@NCNT	Ni _{1+NPs} Co@NCNT	Ni _{1+NPs} Cu@NCNT	Ni _{1+NPs} Zn@NCNT
-0.59	48.64	47.64	57.15	49.34	70.37	57.40
-0.69	70.99	70.51	76.81	68.34	83.15	76.73
-0.79	77.96	80.44	84.70	81.07	89.0	87.85
-0.89	81.26	82.37	86.86	85.18	92.06	90.42
-0.99	79.60	81.20	85.44	83.25	89.56	89.27
-1.09	72.16	78.17	80.74	77.96	84.15	85.73
-1.19	60.96	69.72	71.04	69.23	73.18	78.96

Table S2. FE_{CO} of $Ni_{1+NPs}M@NCNT$ under different potentials.

Figure S15. Typical cyclic voltammetry curves for (a) $Ni_{1+NPs}@NCNT$, (b) $Ni_{1+NPs}Mn@NCNT$, (c) $Ni_{1+NPs}Fe@NCNT$ and (d) $Ni_{1+NPs}Cu@NCNT$ under different scan rates.

Figure S16. (a) XRD patterns of $Ni_{1+NPs}Cu@NCNT$ before (black) and after (red) CO_2RR ; (b) TEM image of the $Ni_{1+NPs}Cu@NCNT$ after CO_2RR .

Figure S17. DFT models for Ni_{1+NPs} @NCNT and $Ni_{1+NPs}Cu$ @NCNT.

Figure S18. CO_2RR performance of Ni_{NPs} @NCNT. (a) current density and (b) FE_{CO} and FE_{H2} under different potentials.

Figure S19. (a) Schematic illustration and (b) photograph of the flow cells.

Figure S20. (a) TCD1 Chromatogram of CO; and (b) TCD2 Chromatogram of H_2 .

Material	Electrolyte	cell	FE _{co} (%)	Potential (V vs. RHE)	Current density (mA cm ⁻²)	Ref.
ACP/S-N-Ni	0.5 M KHCO ₃	H-type	91	-0.77	4.1	9
Ni SAs/N-C	0.5 M KHCO ₃	H-type	71.9	-0.9	10.48	10
NiSA-N-CNTs	0.5 M KHCO ₃	H-type	91.3	-0.7	25.74	11
Ni-N-C	0.1 M KHCO ₃	H-type	97	-0.75	7.73	12
Ni-N ₃ -C	0.5 M KHCO ₃	H-type	95.6	-0.65	6.95	13
NiN-GS	0.1 M KHCO ₃	H-type	93.2	at 0.7 V overpotential	4.16	14
	1M KHCO ₃	Flow cell	91.9	at 0.66 V overpotential	10.68	
NiPc-COF	0.5 M KHCO ₃	H-type	99.1	-0.9 V	-	15
	1 М КОН	Flow cell	94.4	-0.5 V	54	10
Ni(NC)-1	0.5 M KHCO ₃	H-type	99	-0.75, -0.80	-	16
	1 M KOH	Flow cell	99	-1.82	160	
Ni ¹ -NCNT @Ni ₉ Cu	0.5 M KHCO ₃	H-type	97	-0.73	32.87	17
Ni _{1+NPs} Cu @NCNT	0.25 M KHCO ₃	H-type	92	-0.89	23.69	This work
	1 М КОН	Flow cell	96.92	-0.78	171.25	

Table S3. Comparison of CO₂RR performance displayed by our catalyst and other reported works.

References

- T.D. Kühne, M. Iannuzzi, M.D. Ben, V.V. Rybkin, P. Seewald, F. Stein, T. Laino, R.Z. Khaliullin,
 O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M.H. Bani-Hashemian, V. Weber,
 U. Borštnik, M. Taillefumier, A.S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M.
 Guidon, S. Andermatt, N. Holmberg, G.K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G.
 Tabacchi, A. Glöß, M. Lass, I. Bethune, C.J. Mundy, C. Plessl, M. Watkins, J. VandeVondele,
 M. Krack, J. Hutter, CP2K: An electronic structure and molecular dynamics software package Quickstep: Efficient and accurate electronic structure calculations, *J. Chem. Phys.*, 2020, 152, 194103.
- 2 J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- J. VandeVondele, J. Hutter, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, *J. Chem. Phys.*, 2007, **127**, 114105.
- 4 C. Hartwigsen, S. Goedecker, J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, *Phys. Rev. B*, 1998, **56**, 3641.
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 2010, 132, 154104.
- 6 S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, *J. Comput. Chem.*, 2011, **32**, 1456.
- 7 T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer, *J. Comput. Chem.*, 2012, **33**, 580.
- 8 P. Ros, A.V.D. Avoird, G.C.A. Schuit, Molecular Orbital Calculations on Copper Chloride Complexes, *Coord. Chem. Rev.*, 1967, **2**, 77.
- 9 S. Li, M. Ceccato, X. Lu, S. Frank, N. Lock, A. Roldan, X.-M. Hu, T. Skrydstrup, K. Daasbjerg, Incorporation of nickel single atoms into carbon paper as self-standing electrocatalyst for CO₂ reduction, *J. Mater. Chem. A*, 2021, 9(3), 1583-1592.
- 10 C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO₂, J. Am. Chem. Soc., 2017, **139**(24), 8078-8081.
- 11 Y. Cheng, S. Zhao, B. Johannessen, J.P. Veder, M. Saunders, M.R. Rowles, M. Cheng, C. Liu, M.F. Chisholm, R. De Marco, H.M. Cheng, S.Z. Yang, S.P. Jiang, Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction, *Adv. Mater.*, 2018, **30**(13), 1706287.
- 12 F. Pan, H. Zhang, Z. Liu, D. Cullen, K. Liu, K. More, G. Wu, G. Wang, Y. Li, Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO₂ reduction, *J. Mater. Chem. A*, 2019, 7(46), 26231-26237.
- 13 Y. Zhang, L. Jiao, W. Yang, C. Xie, H.L. Jiang, Rational Fabrication of Low-Coordinate Single-Atom Ni Electrocatalysts by MOFs for Highly Selective CO₂ Reduction, *Angew. Chem. Int. Ed.*, 2021, **60**(14), 7607-7611.
- 14 K. Jiang, S. Siahrostami, A.J. Akey, Y. Li, Z. Lu, J. Lattimer, Y. Hu, C. Stokes, M. Gangishetty, G. Chen, Y. Zhou, W. Hill, W.-B. Cai, D. Bell, K. Chan, J.K. Nørskov, Y. Cui, H. Wang, Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis, *Chem*, 2017, 3(6), 950-960.

- 15 M.D. Zhang, D.H. Si, J.D. Yi, S.S. Zhao, Y.B. Huang, R. Cao, Conductive Phthalocyanine-Based Covalent Organic Framework for Highly Efficient Electroreduction of Carbon Dioxide, *Small*, 2020, 16(52), 2005254.
- 16 C.F. Wen, F. Mao, Y. Liu, X.Y. Zhang, H.Q. Fu, L.R. Zheng, P.F. Liu, H.G. Yang, Nitrogen-Stabilized Low-Valent Ni Motifs for Efficient CO₂ Electrocatalysis, ACS Catal., 2019, 10(2), 1086-1093.
- 17 T. Zhang, X. Han, H. Yang, A. Han, E. Hu, Y. Li, X.Q. Yang, L. Wang, J. Liu, B. Liu, Atomically Dispersed Nickel(I) on an Alloy-Encapsulated Nitrogen-Doped Carbon Nanotube Array for High-Performance Electrochemical CO₂ Reduction Reaction, *Angew. Chem. Int. Ed.*, 2020, **59**(29), 12055-12061.