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1. Materials 

All reagent grade solvents and chemicals for the synthesis were received from Sigma Aldrich and 

used without further purification. 

1.1 Preparation of chiral nanostructures based on silica Nano helices 

1.1.1 Synthesis of 16-2-16 gemini tartrate

The synthesis of 16-2-16 gemini tartrate was performed as previously reported, starting from N, N, 

N′, N′-tetramethylethylenediamine and 1-bromohexadecane then exchanging the bromide counterion 

to acetate using silver acetate then to enantiopure tartrate using tartaric acid 2. The chemical structure 

of the synthesized 16-2-16 gemini tartrate was confirmed by Fourier transform infrared spectroscopy 

(FTIR) and proton nuclear magnetic resonance spectroscopy (1H-NMR) measurements2.

1.1.2 Synthesis of the hybrid silica nano helices (RHH/LHH hybrid)

The powder of 16-2-16 gemini tartrate was dissolved into water at 70 °C (1 mM) and then aged for 

four days at 20 °C. Typical used quantities are 20 mg of powder for 28 mL of ultrapure water3. Then, 

16−2−16 L- or D-tartrate self-assemblies are used as templates to prepare silica nanostructures like 

helix through a sol-gel transcription procedure. In a typical preparation, 0.5 mL of tetraethoxysilane 

(TEOS) was added to 10 mL of 10-4 M aqueous solution of D- or L-tartaric acid and prehydrolyzed 

at 20 °C by stirring on the roller mixer for 7 h. Then, 5 mL of pre hydrolyzed TEOS was mixed with 

5 mL of organic gels and stirred at 20 °C in a roller mixer overnight. Once the transcription was 

completed, the mixture was washed thoroughly by centrifugation in Mill Q (4 °C) five times. 

1.1.3 Synthesis of the inorganic silica nano helices (RHH/LHH inorg)

The 16−2−16 L- or D-tartrate templates were removed by washing with 10 mL methanol at 60 °C 

(five times), then by ethanol and isopropanol (5mL/5mL) under sonication (twice times) and finally 

absolute ethanol (three times) using centrifugation at 3893 g for 10 min alternately4. The prepared 

inorganic silica Helix concentration was adjusted to 1 mg/mL (5 mL). Finally, the suspensions are 

made more homogeneous by breaking helices using tip sonication and then kept in ethanol at room 

temperature for further use.

1.1.4 Synthesis of the amine inorganic silica nano helices (RHH/LHH)



Inorganic silica Nano helices were functionalized with (3-aminopropyl)triethoxysilane 

(APTES)5. Therefore, 20 μL of APTES was added per 1 mg/mL of silica Nano helices in absolute 

ethanol. Then, the mixture was kept in an oil bath at 80 °C overnight. This procedure was repeated 

once to improve the grafting density of amines. The modified silica nanostructure was washed three 

times with absolute ethanol for further use.

1.1.5 Preparation of porphyrin functionalized silica nano helices 

Chiral inorganic silica-NH2 nanohelices reacted with the activated carboxylic acid groups of 

ZnpCTPP, (L)ZnP, and (D)ZnP. For this purpose, in a 5 mL clean round bottom balloon, 1 mg of 

porphyrin molecules in dry DMF (1 mL) was added and kept at 0°C (by using glass) for 5 min. Then, 

1 mg of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 1 mg of 1-Hydroxybenzotriazole 

hydrate (HOBt) and 5 L N-methylmorpholine were added to this solution for 1 hour at 0°C under 

N2. After 1 hour of stirring,1 mL of RHH or LHH (1mg/mL) in dry methanol was added. The mixture 

was kept at 25 °C for 48h under N2. Then, the suspension was sonicated for 5 min, centrifugated using 

ethanol (20000 tr/min for 20 min), and the supernatant was removed. This procedure removes the 

unreacted or non-grafted porphyrins until the supernatant appears colorless. 

2. QMB measurements

Figure S1. Sensor array setup used for gas measurements. The sensor array includes six chiral 
sensors and one nonchiral sensors used as references. 



Figure S1. TEM images of A) LHH-inorg, B) LHH, and C) LHH-ZnpCTPP. Scalebars correspond 

to 200 nm



Table S1. QMB deposition details.

Position Sensing material Initial frequency 
(Hz)

Final frequency 
(Hz)

ΔF 
(Hz)

Δm deposited 
(μg)

QMB1 LHH-(L)ZnP 20000629 19959286 41343 5.74
QMB2 RHH-(D)ZnP 20015292 19972000 43292 6.01
QMB3 RHH-(L)ZnP 20004291 19960816 43475 6.04
QMB4 LHH-(D)ZnP 19981603 19940936 40667 5.65
QMB5 RHH-ZnpCTPP 20041932 20001602 40330 5.60
QMB6 LHH-ZnpCTPP 19975889 19935052 40837 5.67
QMB7 Znbut-TPP 20000675 19967685 32990 4.58



3. Spectroscopic characterization 

3.1 Fourier Transform Infrared Spectroscopy (FTIR) 

Figure S3. Comparison of FTIR spectra of A) RHH-hybrid and LHH-hybrid (blue lines) with 
RHH-inorg and LHH-inorg materials (red lines); B) RHH-inorg and LHH-inorg (red lines) with 
RHH and LHH (green lines); C) RHH and LHH (green lines) with RHH-(L)ZnP and LHH-(L)ZnP 
(yellow lines). 



Table S2. List of all absorption IR bands and corresponding vibrational modes.  
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Figure S4. A) UV-Vis and B) CD spectra of ethanol solutions of (D)ZnP (blue line) and (L)ZnP (red 
line)  
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Figure S5. A) UV-Vis and B) g-factor spectra of porphyrins functionalized chiral silica nano helices 

in ethanol.

Table S3. g-factor values for precursors and prepared systems in corresponding wavelength and 
solvents  

g-factor
Suspension (x10-4)

(λ=440 nm)
Solid film on glass (x10-4)

(λ=447 nm)
LHH-(L)ZnP -3.3 -11
RHH-(D)ZnP +3.4 +9.1
RHH-(L)ZnP +3.4 +8.5
LHH-(D)ZnP -3.1 -9.6
RHH-ZnpCTPP +3.4 +8.8
LHH-ZnpCTPP -3.0 -10



4. Sensor measurements 

4.1 Data responses

Figure S6. Characteristic curves of LHH-(L)ZnP sensor to the five enantiomer pairs.

Figure S7. Characteristic curves of RHH-(D)ZnP sensor to the five enantiomer pairs.
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Figure S8. Characteristic curves of RHH-(L)ZnP sensor to the five enantiomer pairs.

Figure S9. Characteristic curves of LHH-(D)ZnP sensor to the five enantiomer pairs.
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Figure S10. Characteristic curves of RHH-ZnpCTPP sensor to the five enantiomer pairs.

Figure S11. Characteristic curves of LHH-ZnpCTPP sensor to the five enantiomer pairs.
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Figure S12. Characteristic curves of Znbut-TPP sensor to the five enantiomer pairs. We utilized 

this sensor as the achiral element.

Figure S13. Pearson correlation matrix considering all sensor responses.
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Table S3. Average response time for each sensor. S1=LHH-(L)ZnP; S2=RHH-(D)ZnP; S3=RHH-
(L)ZnP; S4=LHH-(D)ZnP; S5=RHH-ZnpCTPP; S6=LHH-ZnpCTPP; S7=Znbut-TPP.

T90 (s)
S1 S2 S3 S4 S5 S6 S7

R S R S R S R S R S R S R S
butan-2-ol 84 81 81 80 87 85 91 89 65 64 110 110 78 78

carvone 100 95 102 99 97 95 106 110 83 84 104 102 118 114
methyl 2-

hydroxypropionat
e

84 88 88 85 114 109 96 106 81 86 87 69 84 89

limonene 58 59 54 57 56 52 91 88 77 73 91 85 59 63
methyl 2-

chloropropionate 57 52 68 62 67 62 99 94 65 72 84 71 73 71

 

4.2 Features extraction

The features extracted from the adsorption phase are 6; in the same way, these from the desorption 

phase are 5; in total, they are 11 for each sensor. Frequency shifts (DF, DF75, DF50, DF25, DF10, 

and DF05) were measured at T, ¾T, T/2, T/4, T/10, and T/20, respectively. Since recovery is always 

complete, DF100 during the desorption coincides with DF during adsorption and has been removed. 

Figure S14. Schematic representation of features extracted from sensors. Similar features have been 

extracted from the desorption phase.

4.2 Multivariate analysis 

4.2.1 Principal Component Analysis (PCA)

A simple method to analyse array properties is Principal Component Analysis (PCA). Sensor 

response is represented in an n-dimensional vector space, where "n" corresponds to the number of 

features extracted from sensors that constitute the array. In other words, each descriptor defines an 

axis of the space. A correlation exists between features describing sensor data if the sensors are not 

specific or are broadly selective. PCA is a simple algorithm to remove correlation by defining a new 



set of orthogonal bases obtained as a linear combination of sensor responses. These new uncorrelated 

variables are called Principal Components.

Furthermore, PCA orders the new features according to the amount of variance expressed. The first 

principal component contains a high percentage of variance, as expected for datasets containing 

analytes measured at different concentrations. Sensor responses are proportional to the concentration, 

whose information dominates the first principal component due to the extensive range of 

concentrations tested. As expected by the complexity of the task, the separation between enantiomers 

of the same compounds is not captured in the first principal components for all the compounds. Still, 

it is necessary to consider the minor order Principal Component to obtain a full separation between 

all the classes. 

In our case, the data matrix is composed of 420 samples expressed by 77 features. Data have been 

autoscaled before performing PCA. Autoscaling transforms each feature in an adimensional 

descriptor in which data distribution has null mean and unitary variance by the formula:

𝑧 =  
𝑥 ‒ 𝜇

𝜎

4.2.2 Confusion matrix

Results are summarized using the confusion matrices. In particular, the confusion matrix represents 

a simple method to evaluate the classifier performances: the columns contain predicted classes, and 

the rows contain actual classes. The element (i,j) reports all cases in which the model has classified 

the actual class i as class j. For the sake of clarity, we decided to show the classification percentage 

for each element (i,j): each value has been calculated as the ratio between the element (i,j) and the 

sum of the element on row i (the same class), multiplied by 100. The confusion matrix shows 

immediately if the classifier confuses the classes with each other. All the elements on the matrix 

diagonal are classified correctly, while the others are classified incorrectly.



Figure S15. The confusion matrix obtained from the classification model that is trained on samples belonging 
only to three random concentrations and validate on the remaining concentrations. The LDA model has been 
trained considering 10 classes.
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