ARTICLE									
Received 00th January 20xx,	Room temperature synthesis of composite thin films with embedded $Cs_2AgIn_{0.9}Bi_{0.1}Cl_6$ lead-free double perovskite nanocrystals with long-term water stability, wide range pH tolerance, and high quantum yield								
Accepted 00th January 20xx	Steevanson Bayer, Jason Ho Yin Yu and Stefan Nagl*								
DOI: 10.1039/x0xx00000x	Department of Chemistry, The Hong Kong University of Science and Technology								
	Kowloon, Hong Kong SAR, China								
	E-mail: chnagl@ust.hk								

Supplementary information

Table of contents

- 1. XPS data of $Cs_2AgIn_{0.9}Bi_{0.1}CI_6$ NCs (Fig. S1)
- 2. EDX images of $Cs_2AgIn_{0.9}Bi_{0.1}Cl_6$ NCs showing individual elements (Fig. S2)
- 3. HR-TEM images of Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs showing the inter planar distance (Fig. S3)
- 4. Thermal stability and photostability of PS and PMMA coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs (Fig. S4)
- 5. Contact angles of composite thin films of Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs (Fig. S5)
- $6. \quad \mbox{Optical surface morphology of polymer coated $Cs_2AgIn_{0.9}Bi_{0.1}Cl_6$ NCs (Fig. S6)$}$
- 7. Comparison of water stability of lead-free and lead perovskite nanocrystals (Table S1)
- 8. TRPL data with average, radiative, and non-radiative lifetime comparisons (Table S2)
- 9. Photographs of PMMA-coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ thin films immersed in BRB solution of pH 2-12 (Fig. S7)

Fig. S1 XPS data of $Cs_2AgIn_{0.9}Bi_{0.1}Cl_6$ NCs confirming the constituent elements: (a) Cs 3d, (b) Bi 4f, (c) Ag 3d, (d) In 3d, (e) Cl 2p. As shown in Fig S1 (a-d), a doublet peak was observed due to the spin-orbit coupling of the corresponding ions.

Fig. S2. EDX images of Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs showing individual elements a) HRTEM image, b) Cs, c) Bi, d) In, e) Cl, f) Ag As shown in Fig. S2, EDX mapping of high resolution TEM images shows all the constituent elements with uniform distribution.

Fig. S3. HRTEM images Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs showing a) a single NC, b) shows the corresponding interplanar lattice distance for the marked area in (a), c) HRTEM image of a cluster of NCs. d) Corresponding Fast Fourier transform (FFT) pattern for the marked area in (c)

Fig. S4. a) PL intensity of PS-coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs and b) PL intensity of PMMA-coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs composite thin films over 5 consecutive heating-cooling cycles between 20 ^oC to 80 ^oC stabilized for 10 mins. c) Photostability measurements of PS and PMMA-coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ thin films in contact with 100 μL water droplets for 120 mins under continuous UV irradiation. d) Photostability of PMMA Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ thin films in contact with 100 μL BRB droplets of different pH values under continuous UV irradiation for up to 60 mins.

Thermal and photostability tests were carried out for PS and PMMA coated NCs as shown in the Fig. S4. The PMMA-coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs composite films showed exceptional stability even when exposed to extremely basic conditions using BRB buffer of pH 13.

Contact angles were measured by applying a 5 µL drop of DI water on the composite thin film surface at room temperature.

Fig. S5. Contact angles of composite thin films of Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs with a) no polymer coating, b) PS coated, and c) PMMA coated.

Fig. S6. Optical surface morphology of a) PS-coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs, b) PMMA-coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs.

The surface morphology of PS-coated $Cs_2AgIn_{0.9}Bi_{0.1}Cl_6$ NCs and PMMA-coated $Cs_2AgIn_{0.9}Bi_{0.1}Cl_6$ NCs was characterized by a 3D optical profiler as shown in Fig. S6. The Ra (arithmetic average roughness) and Rq (quadratic mean roughness) of PS-coated composite thin films were 8.1 μ m and 9.5 μ m, respectively. The Ra and Rq of PMMA-coated composite thin films were 7.5 μ m and 5.7 μ m, respectively.

Journal Name

Composition of perovskite NCs	Polymer coating/ ligands / dopants	Water stability duration	References	
CH ₃ NH ₃ Br – V18	4-Vinylbenzyl-dimethyloctadecylammonium chloride (V18)	90 days	1	
Cs ₂ SnCl ₆ : _{2.75%} Bi	Bi	96 hrs	2	
Cs ₂ AgInCl ₆	None	2 days	3	
Rb ₇ Bi ₃ Cl ₁₆	None	1 month	4	
Cs ₃ Sb ₂ Br ₉	None	45 hrs	5	
Rb _{0.05} Cs _{2.95} Bi ₂ I ₉	None	12 hrs	6	
$Cs_2Sn_{0.89}Te_{0.11}Cl_6$	Sn/Te	6 hrs	7	
PEA ₂ SnBr ₄ - g-C ₃ N ₄	Graphitic carbon nitride (g- C_3N_4)	6 hrs	8	
Cs ₂ ZrCl ₆ :Bi ³⁺	Trimethoxy(octyl)silane	1 day	9	
DMASnl _x Br _{3-x}	CH ₃ -NH ₂ +-CH ₃	20 hrs	10	
DMASnBr ₃ @g-C ₃ N ₄	Graphitic carbon nitride (g-C ₃ N ₄)	35 hrs	11	
CsSnCl ₃	Gelatin	3 days	12	
$Cs_2Zr_{0.0021}Te_{0.0079}Cl_6 \text{ and } Cs_2ZrCl_6$	TeCl ₄ and ZrCl ₄	10 mins	13	
Cs ₃ Bi ₂ I ₉	Polyvinylidene fluoride (PVDF)	35 days	14	
PhBz ₂ GeX ₄ - g-C ₃ N ₄	Graphitic carbon nitride (g-C ₃ N ₄)	1 day	15	
Cs ₂ Ag _{0.17} Na _{0.83} In _{0.88} Bi _{0.12} Cl ₆	Polyvinylidene fluoride (PVDF)	10 days	16	
(Me ₃ TMP)Bi ₂ I ₉ / (H ₃ TMP)Bil ₆	1,1',1"-(benzene-1,3,5-triyl) tris(3-methyl-1H- imidazol-3-ium)	30 days	17	
Cu _{1.4} Ag _{0.6} Bil ₅	Oleic acid / Oleylamine	7 days	18	
(H2NDIEA)2·Bi4l16·2H2O·4MeOH/ (H2NDIEA)2·Bi4l16·8H2O / [(H2NDIEA)2·Bi6l22]n·4nH2O	H ₂ NDIEA·2I	14 days	19	
Cs2AgIne Bie 1Cle NCs	Polymethylmethacrylate (PMMA)	4 months	This work	

Table S1. Comparison of water stability of lead-free perovskite nanocrystals encapsulated with different polymers or ligands reported in the literature.

As per the above comparison, the PMMA-coated $Cs_2AgIn_{0.9}Bi_{0.1}Cl_6$ NCs composite thin films exhibit superior water stability properties without using high synthesis temperature and complex surface modifications. They are low cost and provide a sustainable route for the fabrication of polymer-coated thin films.

Please do not adjust margins

ARTICLE

Journal Name

The average PL lifetime was obtained by bi-exponential fitting of time-resolved PL traces with a $PL(t) = \sum_{i=1}^{n} a_i e^{-t/\tau_i}$ function

Since the PLQY is the ratio of radiative to total recombination rate, the radiative and apparent non-radiative lifetimes and rate constants can be determined as:

$$\tau_{\rm r} = \frac{\langle \tau \rangle}{{}^{\rm PLQY}} \tag{Suppl. Eq. 1}$$

$$\tau_{\rm nr} = \frac{\langle \tau \rangle}{1 - PLQY}$$
(Suppl. Eq. 2)

$$k_r = \frac{p_L Q \gamma}{\langle \tau \rangle}$$
 (Suppl. Eq. 3)

$$k_{nr} = \frac{1}{\langle \tau \rangle} - \frac{PLQY}{\langle \tau \rangle}$$
(Suppl. Eq. 4)

The corresponding calculated values for all the samples are summarized below in table S2.

Properties	As-synthesized	PS-coated	PMMA-coated
	Cs ₂ AgIn _{0.9} Bi _{0.1} Cl ₆ NCs	Cs ₂ AgIn _{0.9} Bi _{0.1} Cl ₆ NCs	Cs ₂ AgIn _{0.9} Bi _{0.1} Cl ₆ NCs
t _{avg} , ns	694	760	797
τ _r , ns	1943	1192	1302
τ _{nr} , ns	1081	2098	2060
k _r , ns ⁻¹	514	839	768
k _{nr} , ns⁻¹	925	477	486

Table S2. Comparison of TRPL lifetime, decay rate of a) As-synthesized Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs, b) PS-coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs, and c) PMMA-coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ NCs.

In the presence of the polymer coating, the non-radiative lifetimes increased by a factor of 2 as seen from the above table. The radiative and non-radiative rates also increase and decrease correspondingly. The decay suggests a longer lifetime for the samples with polymer coating.

Julilai Naille	J	ο	u	r	r	۱	а	L	ľ	J	а	ľ	Y	۱	e	
----------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

	Before BRB	After BRB	1 day	1 week	2 weeks	3 weeks	4 weeks	5 weeks	6 weeks	7 weeks i	2 months	3 months	4 months
рН 2													
рН 4							Ĭ						
рН 6							Ĭ						
рН 8													
pH 10													
pH 12							1	Ĭ	Ž	Ĭ	Ĭ	Ĭ	Ĭ

Fig. S7. Photographs of PMMA-coated Cs₂AgIn_{0.9}Bi_{0.1}Cl₆ thin films immersed in 4 mL BRB solution of pH 2-12 taken with a UV lamp (365 nm) at different time periods.

ARTICLE

Supplementary References

- 1 H. Sun, Z. Yang, M. Wei, W. Sun, X. Li, S. Ye, Y. Zhao, H. Tan, E. L. Kynaston, T. B. Schon, H. Yan, Z. H. Lu, G. A. Ozin, E. H. Sargent, D. S. Seferos, *Adv. Mater.*, 2017, 29, 1701153.
- 2 Z. Tan, J. Li, C. Zhang, Z. Li, Q. Hu, Z. Xiao, T. Kamiya, H. Hosono, G. Niu, E. Lifshitz, and Y. Cheng, Adv. Funct. Mater., 2018, 28 (29), 1801131.
- 3 W. Lee, S. Hong, and S. Kim, J. Phys. Chem. C, 2019, 123(4), 2665-2672.
- 4 L. J. Xie, Q. Z. Huang, B. Wang, J. W. Chen, X. W. Lu, X. Liu, and L. J. Song, Nanoscale, 2019, 11 (14), 6719-6726.
- 5 Z. Ma, Z. Shi, D. Yang, F. Zhang, S. Li, L. Wang, D. Wu, Y. Zhang, G. Na, L. Zhang, and X. Li, ACS Energy Lett., 2019, 5(2), 385-394.
- 6 R. Babu, S. Bhandary, D. Chopra, and P. S. Singh, *Chem. Eur. J.*, 2020, 26 (46), 10519-10527.
- 7 Z. Tan, Y. Chu, J. Chen, J. Li, G. Ji, G. Niu, L. Gao, Z. Xiao, and J. Tang, Adv. Mater., 2020, 32 (32), 2002443.
- 8 L. Romani, A. Bala, V. Kumar, A. Speltini, A. Milella, F. Fracassi, A. Listorti, A. Profumo, and L. Malavasi, J. Mater. Chem. C, 2020, 27, 9189-9194.
- 9 G. Xiong, L. Yuan, Y. Jin, H. Wu, Z. Li, B. Qu, G. Ju, L. Chen, S. Yang, and Y. Hu, Adv. Opt. Mater., 2020, 8 (20), 2000779.
- 10 D. Ju, G. Lin, H. Xiao, Y. Zhang, S. Su, and J. Liu, Sol RRL, 2020, 4 (12), 2000559.
- 11 L. Romani, A. Speltini, F. Ambrosio, E. Mosconi, A. Profumo, M. Marelli, S. Margadonna, A. Milella, F. Fracassi, A. Listorti, F. D. Angelis, and L. Malavasi, *Angew. Chem. Int. Ed.*, 2021, 133, 3655-3662.
- 12 B. Lyu, X. Guo, D. Gao, M. Kou, Y. Yu, J. Ma, S. Chen, H. Wang, Y. Zhang, and X. Bao, J. Haz. Mater., 2021, 403, 123967.
- 13 Y. Liu, Y. Wu, Z. Juan, X. Sun, W. Zhang, H. Zeng, and X. Li, Adv. Opt. Mater., 2021, 9 (24), 2100815.
- 14 B. Mondal, H. K. Mishra, D. Sengupta, A. Kumar, A. Babu, D. Saini, V. Gupta, and D. Mandal. Langmuir, 2022, 40, 12157-12172.
- 15 L. Romani, A. Speltini, R. Chiara, M. Morana, C. Coccia, C. Tedesco, V. Armenise, S. Colella, A. Milella, A. Listorti, A. Profumo, F. Ambrosio, E. Mosconi, R. Pau, F. Pitzalis, A. Simbula, D. Ricciarelli, M. Saba, M. M. Llamas, F. D. Angelis, L. Malavasi, *Cell Rep. Phy. Sci.*, 2023, 101214.
- 16 J. Shi, M. Wang, C. Zhang, J. Wang, Y. Zhou, Y. Xu, and N. V. Gaponenko, J. Mater. Chem. C, 2023, 11, 4742-4752.
- 17 M. K. Li, H. Y. Lu, T. Wang, X. P. Li, N. N. Zhang, S. Q. Fan, F. Shang, N. G. Liu, and C. Li, Inorg. Chem., 2023, 62 (19), 7324-7332.
- 18 M. Liu, K. G. Grandhi, B. Al-Anesi, H. Ali-Löytty, K. Lahtonen, R. Grisorio, and P. Vivo, Electrochim. Acta, 2023, 142734.
- 19 Q. S. Zhang, H. Fang, H. F. Chen, and J. M. Lin, Inorg. Chem., 2023, 62 (48), 19706-19719.