Efficient Cationic Dye Removal in Water through *Arachis hypogaea* Skin-Derived Carbon Nanospheres: A Rapid and Sustainable Approach

Aman Sharma et al.,

Supplementary information:

			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	-19.2	Peak 1:	-19.2	100.0	5.78
Zeta Deviation (mV):	5.78	Peak 2:	0.00	0.0	0.00
Conductivity (mS/cm):	0.119	Peak 3:	0.00	0.0	0.00

S1: Zeta potential curve for GS-CNS

S2: a) Removal efficiency for Indigo Carmine (IC) and Congo Red (CR) with 10 mg/L dye concentration

S3: Optical Profilometry 2D- image of a) Pure Polysulfone membrane, b) GS-CNSs polysulfone membrane, and c) GS-CNSs membrane after dye adsorption

S4: Optical Profilometry 3D- image of a) Pure polysulfone membrane, b) GS-CNSs polysulfone membrane, and c) GS-CNSs membrane after dye adsorption