Electronic Supplementary Information

<u>1-Naphthylacetic Acid Appended Amino Acids-Based Hydrogel: Probing</u> of the Supramolecular Catalysis of Ester Hydrolysis Reaction

Ruchika Bassan^a, Biplab Mondal^b, Mayank Varshney^c and Subhasish Roy^{*a}

^a Department of chemistry Birla Institute of Technology and science-Pilani, K K Birla Goa Campus NH 17B, Zuarinagar, Sancoale, Goa 403726, India,

^b School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata-700034, West Bengal

^c Application Specialist, Characterization Division, Anton Paar India Pvt. Ltd. 582, Phase V, Udyog Vihar Industrial Area, Gurgaon – 122016 (Haryana), India.

E-mail: subhasishr@goa.bits-pilani.ac.in

Table of Content

Topic Name	Page Numb
Experimental Section	S5-S6
Materials and methods	S6
Instrumentations, Techniques and Discussion	S6
3.1 Tgel measurements	S6
3.2 UV-VIS spectroscopy	S6
3.3 X-Ray Diffraction	S6
3.4 FT-IR Spectroscopy	S6
3.5 CD Spectroscopy	S6
3.6 FE-SEM	S6
3.7 Liquid Chromatography-Mass spectrometer	S6 S6
3.9 Zeta Potential	S6
3.10 Catalytic Study	S6-S
3.11 Rheology	S7
3.12 Confocal Microscopy	S7
3.13 pH measurements	S 7
Synthesis of ^L Nap-F and ^D Nap-F	S 7
4.1 Synthesis of 1-Naphthaleneacetic acid-conjugated L-phenylalanine methyl ester (Nap-F-OMe)	S7
4.2 Synthesis of 1-Naphthaleneacetic acid-conjugated L-phenylalanine carboxylic acid (<i>Nap-F</i> -OH or <i>Nap-F</i>)	S 8
4.3 Synthesis of 1-Naphthaleneacetic acid-conjugated D-phenylalanine methyl ester (1-Nap-D- <i>Nap-F</i> -OMe) (<i>Nap-F</i> -OMe)	S 8
4.4 Synthesis of 1-Naphthaleneacetic acid-conjugated D-phenylalanine carboxylic acid (1-Nap-D- <i>Nap-F</i> -OH) (<i>Nap-F</i> -OH or <i>Nap-F</i>)	S9
LC-MS spectrum of ^L Nap-F-OMe	S10
LC-MS spectrum of ^D Nap-F-OMe.	S10
500 MHz ¹ H NMR spectrum of ^L Nap-F-OMe	S11
500 MHz ¹ H NMR spectrum of ^D Nap-F-OMe	S11
125 MHz ¹³ C spectrum of ^L Nap-F-OMe	S12
125 MHz 13C spectrum of ^D Nap-F-OMe	S12
125 MHz DEPT-135 NMR spectrum of ^L Nap-F-OMe	S13
125 MHz DEPT-135 NMR spectrum of ^D Nap-F-OMe	S13
LC-MS spectra of ^L Nap-F-OH	S14
LC-MS spectra of ^D Nap-F-OH	S14

Figur e S12	500 MHz ¹ H NMR spectrum of ^D Nap-F-OH	S15
Figur e S13.	125 MHz ¹³ C spectrum of ^L Nap-F-OH	S16
Figur	125 MHz ¹³ C spectrum of ^D Nap-F-OH	S16
Figur	125 MHz DEPT-135 NMR spectrum of ^L Nap-F-OH	S17
Figur	125 MHz DEPT-135 NMR spectrum of ^D Nap-F-OH	S17
Sigur S17.	T_{gel} profile of the native Nap-F_{H-K} and Nap-F_{H-R} hydrogels. Error bars are shown inside the symbol as standard deviation	S18
`igur S18.	UV-Vis spectroscopic studies of the for mono (Nap-F), two (Nap-F _H , Nap-F _K and Nap-F _R), three (Nap-F _{H-K} , Nap-F _{H-R} and Nap-F _{K-R}) and four component (Nap-F _{H-K-R}) hydrogels and in their solutions states	S18
able S1.	X-ray diffraction major and minor peaks present for all the xerogels of mono $(Nap-F)$, two $(Nap-F_H, Nap-F_K)$ and $Nap-F_R$, three $(Nap-F_{H-K}, Nap-F_{H-R})$ and four component $(Nap-F_{H-K-R})$ hydrogels in their assembled state	S19
igur S19.	FT-IR spectra of Nap-F bulk, mono (Nap-F), two (Nap-F _H , Nap-F _K and Nap-F _R), three (Nap-F _{H-K} , Nap-F _{H-R} and Nap-F _{K-R}) and four components (Nap-F _{H-K-R}) xerogels in KBr.	S20
igur S20.	FTIR-ATR spectra of <i>Nap-F</i> bulk and two $Nap-F_H$, $Nap-F_K$ and $Nap-F_R$ hydrogels in D_2O	S20
ʻigur S21.	Circular Dichroism spectroscopic responses of the mono (Nap-F), two (Nap-F _H , Nap-F _K and Nap-F _R), three (Nap-F _{H-K} , Nap-F _{H-R} and Nap-F _{K-R}) and four-component (Nap-F _{H-K-R}) hydrogels at 0.8 % w/v concentrations and half diluted hydrogels for both L-and D-amino acids-based assembled systems	S21
igur S22.	Responses of I_1/I_3 in the pyrene emission spectra as a function of the concentration of the native, two-, three- and four-component assembled systems. Pyrene concentration kept at 10^{-6} M in all the measurements	
igur	FE-SEM images at assembled solutions of (a) D Nap-F _K and (b) D Nap-F _{K-R} after 50 times dilution at 0.01 % w/v	S 21
able	concentrations	S22 S22
S2.		
igur S24.	FE-SEM images at assembled solutions of (a) D Nap-F _K and (b) D Nap-F _{K-R} after 50 times dilution at 0.01 % w/v concentrations	S22
gur S25.	TEM image of $Nap-F_{K-R}$ showing helical twisted fibers.	S23
igur S26.	Confocal microscopic images of the hydrogels at 0.8 w/v % concentrations (a) & (b) for Nap-F; (c) & (d) for Nap-F _H (6:2); (e) & (f) Nap-F _K (6:2); (g) & (h) for Nap-F _R (6:2); (i) & (j) for Nap-F _{H-K} (6:1:1); (k) & (l) for Nap-F _{H-R} (6:1:1); (m) & (n) Nap-F _{K-R} (6:1:1) and (o) & (p) for Nap-F _{H-K} (5:1:1:1) under bright field and dark field at 405 nm respectively	S23
igur S27	Absorbance vs Concentration plot for determination of molar extinction coefficient (ε) of p - nitrophenol in water	S24
igur 828.	The progress of the <i>p</i> -NPA to <i>p</i> -NP hydrolysis reaction monitored by time dependent UV-Vis spectroscopic study for the systems including a) H-K, (b) H-R, (c) K-R, (d) Nap-F _K , (e) Nap-F _R , (f) Nap-F _{H-K} , (g) Nap-F _{H-R} , (h) Nap-F _{K-R} , (i) Nap-F _{H-K} , (a) Nap-F _{H-K} , (b) Nap-F _{H-K} , (c) Nap-F _{H-}	S24
gur S29.	Lineweaver-Bruk plot for the hydrolysis of <i>p</i> -NPA by using various systems as catalysts such as H-K, H-R, K-R, Nap-F _K , Nap-F _R , Nap-F _{H-K} , Nap-F _{H-R} , Nap-F _{K-R} , Nap-F _{H-K-R} and NaOH	S25
able 83.	Kinetic parameters for the hydrolysis of PNPA in the presence of catalysts system. The Michaelis–Menten kinetics $\frac{d[P]}{dt} = \frac{K_{cat}}{K_m} [E]_0[S]$ equation v = $\frac{d[P]}{dt} = \frac{K_{cat}}{K_m} [E]_0[S]$ and double-reciprocal (Lineweaver–Burk) method with the equation v = $\frac{d[P]}{K_m} = K_m [E]_0[S]$	S25
	$dt = \frac{1}{CatL^{2} J_{0}} K_{M} + [S]$ were used where v is reaction rate, [P] is concentration of product, [E] ₀ is the initial enzyme concentration, [S] is substrate (p-nitrophenyl acetate) concentration, k_{cat} is the catalytic rate constant, and K_{M} is the Michaelis constant. The k_{cat}/K_{M} values calculated from the linear fitting of the double-reciprocal (Lineweaver–Burk) plot (Figure S29)	
igur S30	FE-SEM of (a) Nap- F_K and (b) Nap- F_{K-R} after the catalysis suggesting the stability of the co-assembles structures	S26
ʻigur S31.	ESI-MS of the catalytic mixture solution by Nap-F _{K-R} showing the corresponding molecular ion peak for <i>p</i> -nitrophenolate at m/z 138 and with one sodium ion at m/z 160.80. The peak at m/z 99.70 is originating may be form the acetic acid with one potassium ion	S26

S3

Table S4.	pHs of the assembled systems before and after the p-PNPA hydrolysis	S26
Table S5.	LC-ESI-MS analyses of the mass peaks obtained shown in Figure S31-41 in positive mode at lower voltages including 50 and 70 V	S27-28
Figur e S32- Figur e 42	LC-ESI-MS analyses of all the catalytic systems	S28-S33
Figur e S43.	Lineweaver-Bruk plot for the hydrolysis of PNPA using Nap- F_{K-R} as catalyst keeping the amount of K and R fixed, the amount of Nap-F varied (a) Nap-F at 0.1 w/v%, (b) Nap-F at 0.2 w/v% and (d) Nap-F at 0.3 w/v% for the system 0.3 % w/v, 0.4 % w/v and 0.5 % w/v catalysts respectively	S34
Figur e S44.	UV-Vis spectra for the hydrolysis of PNPA using Nap-F _{K-R} as catalyst keeping the amount of K and R fixed, the amount of Nap-F varied (a) Nap-F at 0.1 w/v%, (b) Nap-F at 0.2 w/v% and (d) Nap-F at 0.3 w/v% for the system 0.3 % w/v, 0.4 % w/v and 0.5 % w/v catalysts respectively	S34
Figur e S45.	Absorbance vs Concentration plot for determination of molar extinction coefficient (ϵ) of p- nitrophenol at pH 9.00.	S35
Figur e S46.	The progress of the <i>p</i> -NPA to <i>p</i> -NP hydrolysis reaction monitored at pH 9.00 by time dependent UV-Vis spectroscopic study for the systems including a) H-K, (b) H-R, (c) K-R, (d) H-K-R, (e) Nap-F _H , (f) Nap-F _K , (g) Nap-F _R , (h) Nap-F _{H-K} , (i) Nap-F _{H-R} , (k) Nap-F _{K-R} , and (l) Nap-F _{H-K-R} .	S35
Figur e S47.	Lineweaver-Bruk plot for the hydrolysis of p-NPA by using various systems as catalysts at pH 9.00 such as Nap- F _H , Nap-F _K , Nap-F _R , Nap-F _{H-K} , Nap-F _{H-R} , Nap-F _{K-R} and Nap-F _{H-K-R} .	S36
Figur e S48.	Absorbance versus time spectra for Nap-F _H , Nap-F _K , Nap-F _R , Nap-F _{H-K} , Nap-F _{H-R} , Nap-F _{K-R} , Nap-F _{H-K-R} , H-R, H-K, K-R and H-K-R at 0.5% w/v concentrations of pH 9.00 with 3µl working solution of <i>p</i> -NPA.	S36
Table S6.	Kinetic parameters for the hydrolysis of PNPA in the presence of catalysts system at pH 9.00. The Michaelis– Menten kinetics equation $v = \frac{d[P]}{dt} = \frac{K_{cat}}{K_m} [E]_0[S]$ and double-reciprocal (Lineweaver–Burk) method with the $d[P]$ K_{cat} [S]	S37
	equation $v = \frac{dt}{dt} = \kappa_{cat}[E]_0 \frac{1}{K_M + [S]}$ were used where v is reaction rate, [P] is concentration of product, [E] ₀ is the initial enzyme concentration, [S] is substrate (p-nitrophenyl acetate) concentration, k_{cat} is the catalytic rate constant, and K_M is the Michaelis constant. The k_{cat}/K_M values calculated from the linear fitting of the double-reciprocal (Lineweaver–Burk) plot (Figure S47)	
Figur e S49.	FE-SEM images at assembled solutions of pH 9.00 (50 times dilution for all samples done from 0.5 w/v % co- assembled solution) which have been used for catalytic studies (a) NAP-F _K 2.5:2.5, (b) NAP-F _{H-K} 3:1:1 and (c) NAP-F _{K-R} 3:1:1 (0.5 w/v %).	S37

1. Experimental Section:

All the chemicals purchased from various suppliers were used without further purification. The L-phenylalanine derivative of 1-Naphthaleneacetic acid (Nap-F ester) was synthesized following conventional solution phase peptide synthetic protocols by coupling methyl ester of L-phenylalanine and 1-Naphthaleneacetic acid by using HoBt and DCC as coupling agent. The purification of the Nap-F ester was carried out by using petroleum ether with an increasing amount of ethyl acetate. The methyl ester of the Nap-F was hydrolyzed following the saponification of the ester method. The free carboxylic acid of the Nap-F was used for further studies. The details of synthetic protocols, purifications and their characterizations by using NMR and mass spectrometric analyses were shown in Figure S1 to Figure S16. The hydrogelation behaviour of both ^L Nap-F and ^D Nap-F and their co-assembled hydrogels were quite similar.

1.1 Two-component gelation

Nap-F along with either of the three basic amino acids L-Histidine (H), L-Lysine (K) and L-Arginine (R) separately were taken together in a single glass vial and the gelation study was performed as follows: i) in one vial Nap-F and H were mixed (Nap-F_H), (ii) in second vial Nap-F and K were mixed (Nap-F_K) and (iii) in third glass vial F and R were mixed (Nap-F_R) in different ratios to check the gelation of these samples. These suspended solutions were sonicated and heated on a hot plate until a clear solution was obtained. These hot clear solutions were kept at room atmosphere undisturbed for 5 to 10 minutes and hydrogelations were confirmed by inverted vial test method. Moreover, individually Nap-F does not form a hydrogel in distilled water (DW) however, in the presence of either of these basic amino acids, Nap-F formed two-component stable hydrogels in water (Figure 1b, 1c and 1d, Table 1).

1.2 Three-component gelation

Nap-F in combination with either of the two basic amino acids were taken and the gelation study were performed as follows: i) in one vial **Nap-F**, **H** and **K** were mixed (**Nap-F**_{H-K}), (ii) in second vial **F**, **H** and **R** were mixed (**Nap-F**_{H-R}) and (iii) in the third glass vial **F**, **K** and **R** were mixed (**Nap-F**_{K-R}) in different ratios to check the gelation of these samples. These suspended solutions were sonicated followed by heating on a hot plate until clear solutions were obtained. These hot clear solutions were kept at room atmosphere and hydrogelations were confirmed by an inverted vial test method. It was observed that individually **Nap-F** not formed hydrogel in distilled water (DW) however, in combination with either of the two basic amino acids, **Nap-F** formed three-component stable hydrogels in water (Figure 1e, 1f and 1g, Table 1).

1.3 Four-component gelation

Nap-F along with all three basic amino acids L-Histidine (**H**), L-Lysine (**K**) and L-Arginine (**R**) were taken together in a single glass vial and the gelation study have been performed. These suspended solutions (**Nap-F**_{H-K-R}) were sonicated and heated on a hot plate until clear solutions were obtained. On keeping this four-component hot solution in room atmosphere undisturbed for 5 to 10 minutes, hydrogelation was observed and confirmed by the inverted vial method. This hydrogel is also obtained in water (Figure 1h, Table 1).

The minimum gelation concentrations (MGCs) of all these hydrogels have been estimated and shown in Table 1. **Nap-F**_K at a 6:2 weight ratio forms hydrogel with MGC of 0.21 % w/v which is the lowest MGC among all these hydrogels and **NAP-F** shows the highest MGC of 0.7 % w/v. **Nap-F**_H also shows a similar MGC value of 0.22 % w/v.

1.4 Xerogel preparation

All the xerogels were prepared by freeze drying the hydrogels in the Lyophilizer and used for various experiments in powder forms.

2. Materials and methods

1-Naphthaleneacetic acid was purchased from Sigma Aldrich. L-Phenylalanine, DCC (N, N'dicyclohexylcarbodiimide) was purchased from Molychem. HOBt (1-hydroxybenzotriazole) was purchased from Spectrochem. *p*-nitrophenyl acetate (PNP) was purchased from TCI.

3. Instrumentations, Techniques and Discussion:

3.1 Tgel measurement: Different (0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0) % w/v hydrogels of Nap-F were prepared by dissolving in phosphate buffer (PB, 50mM) of pH-7.4. All these two, three and four component hydrogelators at

0.8 % w/v concentrations were dissolved in milli Q water, by using sonication followed by heating the solution, until it dissolves completely. At three different concentrations keeping the ratio 6:1:1 for Nap-F_{H-K} and Nap-F_{H-R} and Tgels were measured. The solutions were kept at rest until it comes to room temperature. The hydrogelations of the samples were confirmed by the vial inversion test method. All these gels at 0.8 % w/v were heated in a water bath to check their melting points (Tgel, temperature at which the hydrogels were melted).

3.2 UV-Vis spectroscopy: UV-Visible spectra were recorded by using a JASCO V-550, and the bandwidth and data pitch was set at 1 nm.

3.3 X-Ray Diffraction: The xerogels were characterized by X-ray diffraction (XRD) by using a powder X-ray diffractometer (Bruker D8 Advance) with Cu-K α (λ =0.154 nm).

3.4 FT-IR Spectroscopy: IR Affinity-1 (Shimadzu, Japan) FTIR spectrophotometer was used to record IR spectra and KBr was used to prepare pellets before recording IR spectra.

3.5 CD Spectroscopic Study. The circular dichroism (CD) spectroscopic study was recorded on a JASCO J-810 circular dichroism spectrometer at room temperature. Spectra were scanned at a scan rate of 200 nm/s and 2 nm bandwidth from 190 to 500 nm and the average profile of three different scans were shown in the spectra. Baseline corrections with sample media were performed before the experiments.

3.6 FE-SEM: The gelator solutions (0.25 micromolar) were dropped cast on a glass cover slip. Leica EM ACE200 was used to coat the sample with the gold at a few nm thicknesses. The images were taken under an FEI Quanta FEG 250 scanning electron microscope.

3.7 TEM: TEM imaging were carried out by using a JEOL JEM-210 PLUSCryogenic transmission electron microscope.

3.8 Liquid Chromatography-Mass spectrometry: This data was obtained from Agilent triple quad LCMS 6460 to determine the molecular mass of compounds in the electrospray ionization (ESI +/-) mode.

3.9 NMR: These spectra were recorded on Bruker Avance Neo 500 MHz with Cryoprobe plateform, Topspin controlled console and gradient control with a resolution of 12.5 ns. CDCl₃ and DMSO-d₆ were the solvents used.

3.10 Zeta Potential: Zeta potential measurements were performed by using NanoPlus-Zeta/nano particle analyzer particulate system in water.

3.11 Catalytic Study: The molar extinction coefficient (ϵ) of *p*-nitrophenol (PNP) was estimated in water from

the slope of the linear plot between absorption maxima at 400 nm versus concentrations of the p-nitrophenol 3 μ L of 3 mM p-nitrophenyl acetate has been added individually to all these assembled systems and the progress of hydrolysis have been monitored by UV-vis spectroscopy. The Michaelis-Menten kinetics equation v = $\frac{d[P]}{dt} = \frac{K_{cat}}{K_m} [E]_0[S]$

and double-reciprocal (Lineweaver-Burk) method with equation the v

 $\frac{d[P]}{dt} = K_{cat}[E]_0 \frac{[S]}{K_M + [S]}$ were used where v is reaction rate, [P] is concentration of product, [E]₀ is the initial enzyme concentration, [S] is substrate (p-nitrophenyl acetate) concentration, k_{cat} is the catalytic rate constant, and K_M is the Michaelis constant. The k_{cat}/K_M values calculated from the linear fitting of the double-reciprocal (Lineweaver-Burk) plot.

3.12 Rheology: This measurement was done on Anton Paar, MCR 702e Space with a minimum torque limit of 0.5 nNm under oscillation mode and 1 nNm in rotation mode. The maximum torque limit was 230 mNm. Temperature control was performed by using P-PTD 200 and PP25/SP measuring geometry. The low shear condition was done at a strain of 0.1% and 10 rad/sec angular frequency, and the high shear condition was done at 100% strain and 10 rad/sec angular frequency. All the rheological studies of the hydrogels were performed after a week later from the date of hydrogel preparation.

3.13 Confocal Microscopy: All the hydrogelators solutions (0.5 % w/v) were dropped casted on glass slides. The self-assembled and co-assembled solutions were covered with cover slips for the confocal microscopy imaging purpose in their wet gel states. An Olympus corporation FV3000 model IX83 confocal laser scanning microscope (CLSM) was used for image capturing. A 405 nm laser diode was used as the excitation source and emission was recorded from 413–484 nm range was detected. The detector gain and amplification offset/gain were optimized based on the fluorescence intensities of the hydrogel fibrils.

3.14 pH measurements: The pHs of the catalytic solutions were measured by using THERMO SCIENTIFICTM EUTECHTM pH meter and the calibration of the pH meter was performed by using standard pH solutions of pHs of 4, 7 and 9. The calibration error during the experiments were found to be ± 0.36 .

4. Synthesis of ^LNap-F and ^DNap-F

4.1 Synthesis of 1-Naphthaleneacetic acid-conjugated L-phenylalanine (Nap-F-OMe or Nap-F-OMe): Lphenylalanine (1.65g) was dissolved in methanol (25ml) in a round bottom flask (RBF) covered with a CaCl₂ glass guard tube. The solution was stirred inside a fume hood and kept for cooling by using ice-salt mixture bath. Once the solution was cooled down, 3-5 ml of SOCl₂ was added from the walls of the RBF and covered again with a guard tube and kept for overnight under constant stirring. The completion of the reaction has been confirmed by TLC and the methanol was distilled out until 5 ml remained followed by the addition of di-ethyl ether to the RBF and yellowish-white solid appeared inside the RBF. For extraction purposes, ethyl acetate was added and washing with Na₂CO₃ was performed. The ethyl acetate extract was dried over anhydrous Na₂SO₄ and evaporated in a vacuum to obtain 2-3 ml ethyl acetate solution of the phenylalanine methyl ester.

Now, 1-Naphthalenacetic acid (3.72g) was dissolved in dry N, N-dimethyl formamide (DMF) and kept under stirring condition to cool in an ice-salt bath. Once the solution cooled down, HOBt (1.53g) and DCC (3.09g) were added and stirred well. The final step included the addition of the ethyl acetate solution of the amino acid and kept for stirring for 2 days. The reaction mixture was diluted with ethyl acetate the filtered out to separate N, Ndicyclohexyl urea (DCU). The ethyl acetate layer was washed with 1N HCl, brine, and saturated Na₂CO₃ solution. The organic layer was then further dried over anhydrous Na₂SO₄, to obtain a yellowish product.

This product was further purified through by using silica gel column chromatography, to obtain a pure white product, which is the amino acid derivative (1-Nap-^LF-OMe) (Nap-F-OMe) The synthesis was confirmed by performing LC-MS and NMR spectroscopic studies.

Yield: 49 %

LC-MS-ESI (+) (Figure S1): Observed peak corresponding to M+1]+: at m/z 348.4, exact mass: 347.15

NMR (Figure S3, S5 and S7):

¹**H NMR** (500 MHz, CDCl₃) (Figure S3): δ 8.00 – 7.89 (ddd, *J* = 20.1, 6.2, 3.6 Hz, 2H), 7.88 – 7.83 (d, *J* = 8.3 Hz, 1H), 7.61 – 7.51 (dd, *J* = 6.4, 3.3 Hz, 2H), 7.48 – 7.41 (m, 1H), 7.39 – 7.34 (d, *J* = 6.9 Hz, 1H), 7.13 – 7.06 (m, 1H), 7.05 – 6.96 (t, *J* = 7.6 Hz, 2H), 6.61 – 6.54 (d, *J* = 7.8 Hz, 2H), 5.81 – 5.76 (d, *J* = 8.1 Hz, 1H), 4.91 – 4.83 (s, 1H), 3.67 – 3.63 (s, 3H), 2.91 – 2.91 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) (Figure S5): δ 171.56, 170.36, 135.26, 134.04, 132.05, 130.73, 128.85, 128.81, 128.52, 128.36, 128.34, 76.83, 52.78, 52.22, 41.61, 37.59, 33.98, 25.66, 24.98.

DEPT 135 (125 MHz, CDCl₃) (Figure S7): δ 129.04, 128.85, 128.81, 128.53, 128.44, 128.36, 128.34, 127.74, 126.87, 126.80, 126.22, 125.68, 123.84, 52.79, 52.22, 41.60, 37.57.

4.2 Synthesis of 1-Naphthaleneacetic acid-conjugated L-phenylalanine (Nap-F-OH or Nap-F-OH or Nap-F in short): Hydrolysis was performed by dissolving in methanol (10ml) and under the presence of 1N NaOH (5ml), the reaction was kept overnight. The progress of the reaction was confirmed by monitoring TLCs. Further, the methanol was evaporated and the aqueous part was washed with diethyl ether followed by acidification using 1N HCl. The aqueous layer was then extracted using ethyl acetate. The ethyl acetate extract was dried over anhydrous Na₂SO₄ and evaporated in a vacuum to obtain a white powdered product (1-Nap-^LF-OH) (*NAP-F*). The synthesis has been confirmed by performing LC-MS and NMR.

Yield: 85 %

LCMS-ESI (+) (Figure S9): Observed peak corresponding to M+1]⁺: m/z 334.4 expected mass: 333.14 NMR (Figure S11, S13 and S15)

¹**H NMR** (500 MHz, DMSO-*d*₆) (Figure S11): δ 8.57 – 8.52 (d, *J* = 8.3 Hz, 1H), 7.97 – 7.92 (d, *J* = 8.3 Hz, 1H), 7.92 – 7.88 (d, *J* = 8.0 Hz, 1H), 7.82 – 7.77 (d, *J* = 8.1 Hz, 1H), 7.53 – 7.37 (m, 3H), 7.35 – 7.30 (d, *J* = 7.0 Hz, 1H), 7.30 – 7.19 (q, *J* = 7.3, 6.6 Hz, 5H), 4.52 – 4.44 (td, *J* = 9.5, 4.6 Hz, 1H), 3.97 – 3.87 (s, 1H), 3.14 – 3.07 (dd, *J* = 13.8, 4.6 Hz, 1H), 2.96 – 2.88 (dd, *J* = 13.8, 9.8 Hz, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) (Figure S13): δ 173.57, 170.53, 138.09, 133.73, 133.02, 132.38, 129.61, 128.74, 128.64, 128.20, 127.46, 126.88, 126.35, 126.02, 125.88, 124.73, 54.02, 39.90, 37.26.

DEPT 135 (126 MHz, DMSO-*d*₆) (Figure S15): δ 132.37, 129.61, 128.74, 128.65, 128.20, 127.47, 126.88, 126.36, 126.02, 125.88, 124.72, 54.02, 39.81, 37.25.

The same protocol was used for the synthesis of 1-Naphthalenacetic acid appended D-phenylalanine and the corresponding characterizations results are as follows:

4.3 (1-Nap-^{*D*}F-OMe) (Nap-F-OMe):

Yield: 57 %

LC-MS-ESI (+) (Figure S2): Observed peak corresponding to [M]⁺: 347.70 exact mass: 347.15.

¹**H NMR** (500 MHz, CDCl₃) (Figure S4): δ 7.84 (ddd, J = 19.1, 6.3, 3.4 Hz, 2H), 7.75 (d, J = 8.2 Hz, 1H), 7.45 (dd, J = 6.3, 3.3 Hz, 2H), 7.34 (t, J = 7.6 Hz, 1H), 7.27 (s, 1H), 6.98 (d, J = 7.4 Hz, 1H), 6.88 (t, J = 7.6 Hz, 1H), 7.27 (s, 1H), 7.2

2H), 6.47 (d, J = 7.4 Hz, 2H), 5.67 (d, J = 8.1 Hz, 1H), 4.76 (dt, J = 8.0, 5.6 Hz, 1H), 3.99 (d, J = 16.3 Hz, 1H), 3.88 (d, J = 16.4 Hz, 1H), 3.54 (s, 3H), 1.11 – 0.96 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) (Figure S6): δ 171.65, 170.47, 135.33, 134.11, 132.15, 130.79, 128.94, 128.91, 128.62, 128.45, 126.96, 126.90, 126.32, 125.77, 123.93, 52.88, 52.32, 41.69, 37.66, 34.02, 25.73, 25.05.

DEPT 135 (125 MHz, CDCl₃) (Figure S8): δ 128.85, 128.81, 128.53, 128.36, 128.34, 126.87, 126.80, 126.22, 125.67, 123.83, 52.79, 52.22, 49.18, 41.60, 37.57, 33.93, 25.63, 24.95.

4.4 (1-Nap-^{*D*}**F-OMe) (Nap-F-OH or Nap-F)**: **Yield**: 85 %

LC-MS-ESI (+) (Figure S10): observed peak corresponding to M]⁺ at m/z 333.70 exact mass: 333.14.

¹**H NMR** (500 MHz, DMSO-d₆) (Figure S12): δ 7.84 (ddd, J = 19.1, 6.3, 3.4 Hz, 2H), 7.75 (d, J = 8.2 Hz, 1H), 7.45 (dd, J = 6.3, 3.3 Hz, 2H), 7.34 (t, J = 7.6 Hz, 1H), 7.27 (s, 1H), 6.98 (d, J = 7.4 Hz, 1H), 6.88 (t, J = 7.6 Hz, 2H), 6.47 (d, J = 7.4 Hz, 2H), 5.67 (d, J = 8.1 Hz, 1H), 4.76 (dt, J = 8.0, 5.6 Hz, 1H), 3.99 (d, J = 16.3 Hz, 1H), 3.88 (d, J = 16.4 Hz, 1H), 3.54 (s, 3H), 1.11 – 0.96 (m, 1H).

¹³C NMR (125 MHz, DMSO-d₆) (Figure S14): δ 173.10, 170.05, 137.63, 133.26, 129.14, 128.27, 128.17, 127.72, 126.99, 126.40, 125.89, 125.55, 125.41, 124.26, 53.57, 36.79.

DEPT 135 (125 MHz, DMSO-d₆) (Figure S16): δ 129.23, 128.36, 128.26, 127.81, 127.08, 126.49, 125.98, 125.64, 125.50, 124.35, 53.66, 36.88.

Figure S1. LC-MS spectrum of ^L*N*ap-*F*-OMe.

Figure S2. LC-MS spectrum of ^D*N*ap-*F* -OMe.

Figure S3. 500 MHz ¹H NMR spectrum of ^LNap-F-OMe.

Figure S4. 500 MHz ¹H NMR spectrum of $^{D}Nap-F$ -OMe.

Figure S5. 125 MHz ¹³C spectrum of ^L*N*ap-*F*-OMe.

Figure S6. 125 MHz ¹³C spectrum of ^D*N*ap-*F*-OMe.

Figure S7. 125 MHz DEPT-135 NMR spectrum of ^L*N*ap-*F*-OMe.

Figure S8. 125 MHz DEPT-135 NMR spectrum of ^DNap-F-OMe.

Figure S9. LC-MS-ESI spectrum of ^LNap-F-OH.

Figure S10. LC-MS-ESI spectrum of ^DNap-F-OH.

Figure S11. 500 MHz ¹H NMR spectrum of ^LNap-F-OH.

Figure S12. 500 MHz ¹H NMR spectrum of ^D*N*ap-*F*-OH.

Figure S13. 125 MHz 13 C spectrum of ^{L}Nap -F-OH.

Figure S14. 125 MHz ¹³C spectrum of ^DNap-F-OH.

Figure S15. 125 MHz DEPT-135 NMR spectrum of ^LNap-F-OH.

Figure S16. 125 MHz DEPT-135 NMR spectrum of ^DNap-F-OH.

Figure S17. T_{gel} profile of the native Nap-F_{H-K} and Nap-F_{H-R} hydrogels. Error bars are shown inside the symbol as standard deviation.

Figure S18. UV-Vis spectroscopic studies of the for mono (Nap-F), two (Nap-F_H, Nap-F_K and Nap-F_R), three (Nap-F_{H-K}, Nap-F_{H-R} and Nap-F_{K-R}) and four component (Nap-F_{H-K-R}) hydrogels and in their solutions states at different dilutions.

Table S1. X-ray diffraction major and minor peaks present for all the xerogels of mono (Nap-F), two (Nap-F_H, Nap-F_K and
Nap-F_R), three (Nap-F_{H-K}, Nap-F_{H-R} and Nap-F_{K-R}) and four component (Nap-F_{H-K-R}) hydrogels in their assembled state.

	<i>N</i> ар- <i>F</i>	Nap-F _K	Nар -F_{H-K}	Nap-F _{K-R}	Nap-F _{H-K-}	<i>N</i> ap - <i>F</i> _{<i>H</i>}	Nap-	Nap-
2	7 75/11 4	7 13/12 4	7 08/12 5	7.08/12.5	R 7 13/12 4	5 39/16 4	F _R 7 19/12 3	F _{H-R} 7 19/12 3
2 θ/d (Å)	Highest Intensity	7.13/12.4	7.00/12.5	1.00/12.5	1.13/12.7	5.59/10.4	1.19/12.5	1.19/12.5
	9.44/9.4	7.71/11.5	9.46/9.3	7.78/11.4	8.76/10.1	7.31/12.1	7.71/11.5	9.05/9.8
	15.45/5.7	8.53/10.4	10.68/8.3 Low Intensity peak	8.53/10.4	9.46/9.3	8.24/10.7	8.53/10.4	9.46/9.3
	17.35/5.1	10.57/8.4 Medium Intensity	15.16/5.8	10.63/8.3 Highest Intensity	9.87/9.0	9.46/9.3	9.46/9.3	9.93/8.9
	17.98/4.9	17.08/5.2 Highest Intensity	17.43/5.1	15.51/5.7	10.68/8.3	10.98/8.1 Low Intensity peak	10.57/8.4 Medium Intensity	10.86/8.1
	19.92/4.5	18.31/4.8	18.89/4.7 Medium Intensity	17.08/5.2 Medium Intensity	15.28/5.8	14.06/6.3	12.26/7.2	14.46/6.1
	23.26/3.8	21.39/4.2	21.16/4.2 Highest Intensity	17.38/5.1	15.81/5.6	14.70/6.0	14.41/6.1	15.28/5.8
	28.60/3.1	21.98/4.0	23.89/3.7 Medium Intensity	18.31/4.8	17.55/5.1	15.34/5.8 Low Intensity peak	17.08/5.2 Highest Intensity	16.68/5.3
		22.38/4.0	28.61/3.1	21.39/4.2	18.13/4.9	18.95/4.7 Medium Intensity	18.31/4.8	17.5/5.1
		24.59/3.6	29.77/3.0	21.98/4.0	18.95/4.7 Highest Intensity	21.16/4.2 Low Intensity peak	20.22/4.4	19.01/4.7 Medium Intensity
		28.73/3.1		22.45/4.0	21.10/4.2 Highest Intensity	24/3.7 Highest Intensity	20.75/4.3	19.94/4.5
				24.65/3.6	24.01/3.7 Highest Intensity	27.97/3.2	21.16/4.2	20.52/4.3
				28.20/3.2	28.66/3.1	28.66/3.1	21.45/4.1	21.16/4.2 Highest Intensity
					29.89/3.0	29.48/3.0	22.03/4.0	24.13/3.7 Highest Intensity
						29.89/3.0	22.44/4.0	25.41/3.5
							24.59/3.6	26.46/3.4
							28.66/3.1	29.13/3.1
							29.77/3.0	29.89/3.0

Figure S19. FT-IR spectra of Nap-F bulk, mono (Nap-F), two (Nap-F_H, Nap-F_K and Nap-F_R), three (Nap-F_{H-K}, Nap-F_{H-R} and Nap-F_{K-R}) and four components (Nap-F_{H-K-R}) xerogels in KBr.

Figure S20. FTIR-ATR spectra of Nap-F bulk and two Nap-F_H, Nap-F_K and Nap-F_R hydrogels in D₂O.

Wavelength / nm

Figure S21. Circular Dichroism spectroscopic responses of the mono (Nap-F), two (Nap-F_H, Nap-F_K and Nap-F_R), three (Nap-F_{H-K}, Nap-F_{H-R} and Nap-F_{K-R}) and four-component (Nap-F_{H-K-R}) hydrogels at 0.8 % w/v concentrations and half diluted hydrogels for both L-and D-amino acids-based assembled systems.

Figure S22. Responses of I_1/I_3 in the pyrene emission spectra as a function of the concentration of the native, two-, three- and fourcomponent assembled systems. Pyrene concentration kept at 10⁻⁶ M in all the measurements.

Figure S23. FE-SEM images at assembled solutions (50 times dilution for all samples done from 0.5 w/v % co- assembled solution) which have been used for catalytic studies (a) Nap-F_H 2.5:2.5, (b) Nap-F_K 2.5:2.5, (c) Nap-F_R 2.5:2.5 (0.5 w/v %), (d) Nap-F_{H-K} 3:1:1, (e) Nap-F_{H-K} 3:1:1 (f) Nap-F_{K-R} 3:1:1, (g) Nap-F_{H-K-R} 2:1:1:1.

Figure S24. FE-SEM images at assembled solutions of (a) D Nap-F_K and (b) D Nap-F_{K-R} after 50 times dilution at 0.01 % w/v concentrations.

Catalytic system	Total strands	Right-handed	left-handed
^L Nap-F _K	250	100 %	0
^L Nap-F _{H-K}	70	100%	0
^L Nap-F _{K-R}	140	100%	0
^L Nap-F _{H-K-R}	90	100%	0
^D Nap-F _K	210	20%	80%
^D Nap-F _{K-R}	100	10%	90%

 Table S2. Handedness of the helical fibers.

Figure S25. TEM image of Nap-F_{K-R} showing helical twisted fibers.

Figure S26. Confocal microscopic images of the hydrogels at 0.8 w/v % concentrations (a) & (b) for Nap-F; (c) & (d) for Nap-F_H (6:2); (e) & (f) Nap-F_K (6:2); (g) & (h) for Nap-F_R (6:2); (i) & (j) for Nap-F_{H-K} (6:1:1); (k) & (l) for Nap-F_{H-R} (6:1:1); (m) & (n) Nap-F_{K-R} (6:1:1) and (o) & (p) for Nap-F_{H-K-R} (5:1:1:1) under bright field and dark field at 405 nm respectively.

Figure S27. Absorbance vs Concentration plot for determination of molar extinction coefficient (ε) of *p*- nitrophenol in water.

Figure S28. The progress of the *p*-NPA to *p*-NP hydrolysis reaction monitored by time dependent UV-Vis spectroscopic study for the systems including a) H-K, (b) H-R, (c) K-R, (d) Nap-F_K, (e) Nap-F_R, (f) Nap-F_{H-K}, (g) Nap-F_{H-R}, (h) Nap-F_{K-R}, (i) Nap-F_{H-K-R} and (j) NaOH.

Figure S29. Lineweaver-Bruk plot for the hydrolysis of *p*-NPA by using various systems as catalysts such as H-K, H-R, K-R, Nap-F_K, Nap-F_{H-K}, N

Table S3. Kinetic parameters for the hydrolysis of PNPA in the presence of different catalyst systems in water. The Michaelis–Menten kinetics equation $v = \frac{d[P]}{dt} = \frac{K_{cat}}{K_m} [E]_0[S]$ and double-reciprocal (Lineweaver–Burk) method with the equation $v = \frac{d[P]}{dt} = \frac{K_{cat}}{K_m} [E]_0[S]$

kinetics equation $v = \frac{dt}{K_m} = \frac{K_m}{K_m + [S]}$ and double-reciprocal (Lineweaver-Burk) method with the equation $v = \frac{d[P]}{dt} = K_{cat}[E]_0 \frac{[S]}{K_m + [S]}$ were used where v is reaction rate [P] is concentration of product [E]₀ is the initial enzyme concentration.

 $dt = {}^{curt \to 0}K_M + [S]$ were used where v is reaction rate, [P] is concentration of product, [E]₀ is the initial enzyme concentration, [S] is substrate (p-nitrophenyl acetate) concentration, k_{cat} is the catalytic rate constant, and K_M is the Michaelis constant. The k_{cat}/K_M values calculated from the linear fitting of the double-reciprocal (Lineweaver–Burk) plot (Figure S29).

Catalyst	K _{cat} (s ⁻¹)	K _M (M)	K _{cat} / K _M (M ⁻¹ s ⁻¹)
H-K (2.5:2.5) (0.5% w/v)	1.52×10^{-4}	1.18 ×10 ⁻²	1.28 ×10 ⁻²
H-R (2.5:2.5) (0.5% w/v)	6.06 ×10 ⁻⁷	2.00 ×10-3	3.03 ×10 ⁻⁴
K-R (2.5:2.5) (0.5% w/v)	1.67 ×10-4	8.19×10-3	2.03 ×10 ⁻²
Nap-F _K (2.5:2.5) (0.5% w/v)	4.80 ×10-4	1.96 ×10-3	2.45 ×10-1
Nap-F _R (2.5:2.5) (0.5% w/v)	3.38 ×10-4	1.72 ×10-3	1.96 ×10-1
Nap-F _{H-K} (3:1:1) (0.5% w/v)	1.81 ×10-4	2.26 ×10-3	8.02 ×10 ⁻²
Nap-F _{H-R} (3:1:1) (0.5% w/v)	1.35 ×10-5	2.20 ×10-4	6.14 ×10 ⁻²
Nap-F _{K-R} (3:1:1) (0.5% w/v)	1.87 ×10-4	4.97 ×10-3	3.76 ×10-1
Nap-F _{H-K-R} (2:1:1:1) (0.5% w/v)	1.62 ×10-4	1.07 ×10-3	1.51 ×10-1
NaOH (0.5% w/v)	1.33 ×10-4	2.21 ×10-3	6.03 ×10-2

0.0

Figure						S30. FE-
SEM of F_K and (b) after the suggesting	Catalytic systems	pH before catalysis in water	pH after catalysis in water	Amt. of I (N) NaOH / HCl added to make pH 9	pH after catalysis from pH-9	(a) Nap- Nap-F _{K-R} catalysis the
stability of	Nap-F _H	5.97	6.0	100ul	8.58	the co-
assembles	Nap-F _K	8.94	9.00	5ul	8.04	structures.
Table S4	Nap-F _R	8.74	8.84	20ul	8.40	nHs of the
assembled	Nap-F _{H-K}	5.82	6.35	60ul	7.83	systems
before and	Nap-F _{H-R}	5.37	6.11	70ul	8.3	after the
<i>p</i> -PNPA	Nap-F _{K-R}	7.8	8.5	50ul	7.8	
	Nap-F _{H-K-R}	8.49	8.3	20ul	8.6	
	Ĥ-K-R	9.25	9.27	13ul (HCl)	8.74	
	H-K	8.87	9.05	10ul	8.57	
	H-R	8.69	8.88	12ul	8.64	
	K-R	9.79	9.95	5ul (HCl)	8.68	

hydrolysis.

Hydrolysis performed using	Peaks	Possible molecular ion and fragments corresponding to the m/z
the catalytic systems at	found	
positive mode ESI	at m/z	
Naon both at 50 and 70 V	107	U ₂ N OH
(Figure S31)		
		m/z at 107 is due to $[M+2H_2O+2H^+]/2$ $+H_2O+2H^{12+}$
	117	O_2N
		OH
	100	m/z at 117 is due to [198+2NH ₄ +]/2 + 2NH ₄ +] ²⁺
	122	m/z at 122 due to $[M+2Na]/2$ of the intermediate shown below when hydroxyl ions act as nucleophile
		$+2Nal^{2+}$
	139	m/z at 139 is due to M_{PNP}] ⁺
Histidine (H) only at 50 and	107	O ₂ N OH
70 V		
(Figure S32)		m/z at 107 is due to $[M+2H-Q+2H^+]/2$ as
	117	OnN ^
		OH
	150	m/z at 117 is due to [198+2NH ₄ +]/2 as +2NH ₄ +] ²⁺
	156	m/z at 156 is due to $[M_{Histidine}+H]^+$
Lysine (K) only at 50 and 70	107	O ₂ N
V (Figure S33)		
(8)		m/2 at 107 is the to [M] (20 O) (2011)/2 as
	117	$\frac{11/2}{10} = \frac{11/2}{10} = $
		OH OH
		m/z at 117 is due to $[198+2NH_4^+]/2$ as $-2NH_4^+]^{2+}$
	147	m/z at 147 $[M_{Lysine}+H]^+$
Arginine (R) only at 50 and 70 V (Figure \$24)	175	m/z at 175 is due to $[M_{Arginine}+H]^+$
(Figure 554)	117	0 ₂ N
	276	m/z at 117 is due to $[198+2NH_4^+]/2$ as $+2NH_4^+]^{2+}$
	270	Diacetyl argmine+H ₂ OJ

Figure S31. ESI-MS of the catalytic mixture solution by **Nap-F**_{K-R} showing the corresponding molecular ion peak for *p*-nitrophenolate at m/z 138 and with one sodium ion at m/z 160.80. The peak at m/z 99.70 is originating may be form the acetic acid with one potassium ion. The peak at m/z 197.60 to 199 may be due to the formation of alkoxide ion intermediate (molar mass of the intermediate is 198 g mol⁻¹) due to the ester hydrolysis by hydroxyl as nucleophile.

Table S5: LC-ESI-MS analyses of the mass peaks obtained shown in Figure S31-41 in positive mode at lower voltages including 50 and 70 V.

Two (Nap- F_H , Nap- F_K and	225	m/z at 225 may be due to $[M_{Nap-F}+PNPA+2NH_4^+]/2$ or $[M_{Nap-F}+PNP+2K^+]/2$				
Nap- F_R , three (Nap- F_{H-K} ,	268	m/z at 225 may be due to or $[M_{\odot}, -+PNP+H_{\odot}O+2Na^+]/2$				
Nap- $\mathbf{F}_{\mathbf{H}-\mathbf{R}}$ and Nap- $\mathbf{F}_{\mathbf{K}-\mathbf{R}}$) and	334	m/z at 324 may be due to M_{map} intermediate shown below when hydroxyl ions act as nucleonhile				
Tour-component (Nap-F _{H-K-R})	554	in z at 554 may be due to w of the interintenate shown below when hydroxyl tons act as hacteophile				
systems						
(Figure S35 to 41)		$O_2^{(N)}$ $O_2^$				
	356	m/z at 356 can be for $[M_{Nap-F}+Na]^+$				
For K containing co- assembled two $(Nap-F_K)$, three $(Nap-F_{H-K} \text{ and } Nap-F_{K-R})$ and four-component $(Nap-F_{H-K-R})$ systems	334	m/z at 334 can be for $[M_{Nap-F}+H]^+$				
(Figure S36, 38, 40 to 41)						
For R containing co-	334	m/z at 334 can be for $[M_{Nap-F}+H]^+$				
assembled Two $(Nap-F_R)$,		or it can be $[M_{di-acetyl arginine}+K+2H_2O]^+$				
three (Nap- F_{H-R} and Nap- F_{K-}						
R) and four-component (Nap-						
F _{H-K-R}) systems						
(Figure S37, 39, 40 to 41)						
For H containing co-	334	m/z at 334 can be for $[M_{Nap-F}+H]^+$				
assembled two $(Nap-F_H)$,						
three (Nap- F_{H-K} and Nap- F_{H-}						
R) and four-component (Nap-						
$\mathbf{F}_{\text{H-K-R}}$ systems						
(Figure \$35, 38, 39 and 41)						

Figure S32. ESI-LC-MS profiles of the catalytic mixture solution by using NaOH.

Figure S33. ESI-LC-MS profiles of the catalytic mixture solution by using basic amino acid histidine.

Figure S34. ESI-LC-MS profiles of the catalytic mixture solution by using basic amino acid lysine.

Figure S35. ESI-LC-MS profiles of the catalytic mixture solution by using basic amino acid arginine.

Figure S36. ESI-LC-MS profiles of the catalytic mixture solution by using co-assembled system, Nap-F_H.

Figure S37. ESI-LC-MS profiles of the catalytic mixture solution by using co-assembled system, Nap-F_K.

Figure S38. ESI-LC-MS profiles of the catalytic mixture solution by using co-assembled system, Nap-F_R.

Figure S39. ESI-LC-MS profiles of the catalytic mixture solution by using co-assembled system, Nap-F_{H-K}.

Figure S40. ESI-LC-MS profiles of the catalytic mixture solution by using co-assembled system, Nap-F_{H-R}.

Figure S41. ESI-LC-MS profiles of the catalytic mixture solution by using co-assembled system, Nap-FK-R.

Figure S42. ESI-LC-MS profiles of the catalytic mixture solution by using co-assembled system, Nap-F_{H-K-R}.

Figure S43. Lineweaver-Bruk plot for the hydrolysis of PNPA using Nap- F_{K-R} as catalyst keeping the amount of K and R fixed, the amount of Nap-F varied (a) Nap-F at 0.1 w/v%, (b) Nap-F at 0.2 w/v% and (d) Nap-F at 0.3 w/v% for the system 0.3 % w/v, 0.4 % w/v and 0.5 % w/v catalysts respectively.

Figure S44. UV-Vis spectra for the hydrolysis of PNPA using Nap- F_{K-R} as catalyst keeping the amount of K and R fixed, the amount of Nap-F varied (a) Nap-F at 0.1 w/v%, (b) Nap-F at 0.2 w/v% and (d) Nap-F at 0.3 w/v% for the system 0.3 % w/v, 0.4 % w/v and 0.5 % w/v catalysts respectively.

Figure S45. Absorbance vs Concentration plot for determination of molar extinction coefficient (ε) of *p*- nitrophenol at pH 9.00.

Figure S46. The progress of the *p*-NPA to *p*-NP hydrolysis reaction monitored at pH 9.00 by time dependent UV-Vis spectroscopic study for the systems including a) H-K, (b) H-R, (c) K-R, (d) H-K-R, (e) Nap-F_H, (f) Nap-F_K, (g) Nap-F_R, (h) Nap-F_{H-K}, (i) Nap-F_{H-R}, (k) Nap-F_{K-R}, and (l) Nap-F_{H-K-R}.

Figure S47. Lineweaver-Bruk plot for the hydrolysis of *p*-**NPA** by using various systems as catalysts at pH 9.00 such as Nap-F_H, Nap-F_K, Nap-F_R, Nap-F_{H-K}, Nap-F_{K-R} and Nap-F_{H-K-R}.

Figure 48. Absorbance versus time spectra for Nap-F_H, Nap-F_K, Nap-F_R, Nap-F_{H-R}, Nap-F_{K-R}, Nap-F_{H-K-R}, H-R, H-K, K-R and H-K-R at 0.5% w/v concentrations of pH 9.00 with 3ul working solution of NPA.

Table S6. Kinetic parameters for the hydrolysis of PNPA in the presence of catalyst systems at pH 9.00. The Michaelis-Menten kinetics

equation v = $\frac{d[P]}{dt} = \frac{K_{cat}}{K_m} [E]_0[S]$ and double-reciprocal (Lineweaver–Burk) method with the equation $v = \frac{d[P]}{dt} = K_{cat}[E]_0 \frac{[S]}{K_M + [S]}$ were used where v is reaction rate, [P] is concentration of product, [E]₀ is the initial enzyme concentration, [S] is substrate (p-nitrophenyl acetate) concentration, k_{cat} is the catalytic rate constant, and K_M is the Michaelis constant. The k_{cat}/K_M values calculated from the linear fitting of the double-reciprocal (Lineweaver-Burk) plot (Figure S47).

Catalyst	Kcat (S ⁻¹)	Км (М)	K _{cat} / K _M (M ⁻¹ s ⁻¹)
H-K (2.5:2.5) (0.5% w/v)	2.02×10^{-3}	8.11 ×10-2	2.49 ×10 ⁻²
H-R (2.5:2.5) (0.5% w/v)	1.21 ×10 ⁻⁴	5.43 ×10 ⁻³	2.23 ×10 ⁻²
K-R (2.5:2.5) (0.5% w/v)	1.33 ×10 ⁻⁴	6.84 ×10 ⁻³	1.95 ×10-2
Nap-F _H (2.5:2.5) (0.5% w/v)	1.635 ×10-4	6.06 ×10 ⁻³	2.68 ×10-2
Nap-F _K (2.5:2.5) (0.5% w/v)	2.40 ×10-4	3.63×10 ⁻²	6.61 ×10 ⁻²
Nap-F _R (2.5:2.5) (0.5% w/v)	1.02 ×10 ⁻⁴	3.69 ×10-3	2.75 ×10 ⁻²
H-K-R (1.6:1.6:1.6) (0.5% w/v)	3.17 ×10 ⁻³	1.57×10 ⁻¹	2.02 ×10-2
Nap-F _{H-K} (3:1:1) (0.5% w/v)	1.27 ×10 ⁻⁵	3.0 ×10 ⁻³	4.23 ×10 ⁻³
Nap-F _{H-R} (3:1:1) (0.5% w/v)	3.38 ×10-4	8.55×10-3	3.95 ×10 ⁻²
Nap-F _{K-R} (3:1:1) (0.5% w/v)	3.27 ×10 ⁻⁴	7.76 ×10 ⁻³	4.22 ×10 ⁻²
Nap-F _{R-K-H} (2:1:1:1) (0.5% w/v)	1.62 ×10 ⁻⁴	4.7 ×10-3	3.44 ×10 ⁻²

Figure S49. FE-SEM images at assembled solutions of pH 9.00 (50 times dilution for all samples done from 0.5 w/v % co- assembled solution) which have been used for catalytic studies (a) Nap- F_K 2.5:2.5, (b) Nap- F_{H-K} 3:1:1 and (c) Nap- F_{K-R} 3:1:1 (0.5 w/v %).